参加 ログイン

Kovacs Linda

メンバー加入日: 2021

シルバーリーグ

56875 ポイント
生成 AI のための ML オペレーション(MLOps) Earned 8月 9, 2025 EDT
Dataflow を使用したサーバーレスのデータ処理: 基礎 Earned 8月 8, 2025 EDT
ML オペレーション(MLOps): 概要 Earned 7月 19, 2024 EDT
本番環境 ML システム Earned 7月 16, 2024 EDT
企業における ML Earned 7月 13, 2024 EDT
Recommendation Systems on Google Cloud Earned 7月 8, 2024 EDT
Google Cloud での Keras を使った ML モデルの構築、トレーニング、デプロイ Earned 7月 5, 2024 EDT
特徴量エンジニアリング Earned 7月 5, 2024 EDT
Level 3: GenAIus Travels Earned 6月 24, 2024 EDT
Google Cloud の ML API 用にデータを準備 Earned 6月 20, 2024 EDT
Natural Language Processing on Google Cloud Earned 6月 20, 2024 EDT
How Google Does Machine Learning - 日本語版 Earned 6月 19, 2024 EDT
Vertex AI での ML ソリューションの構築とデプロイ Earned 6月 14, 2024 EDT
Launching into Machine Learning - 日本語版 Earned 6月 14, 2024 EDT
Computer Vision Fundamentals with Google Cloud Earned 6月 8, 2024 EDT
Google Cloud Big Data and Machine Learning Fundamentals - 日本語版 Earned 6月 4, 2024 EDT
Text Prompt Engineering Techniques Earned 5月 24, 2024 EDT
Generative AI Explorer : Vertex AI Earned 5月 22, 2024 EDT
Cloud Hero Infra II Skills Earned 5月 22, 2024 EDT
Google の SRE 文化の醸成 Earned 5月 21, 2024 EDT
Generative AI for Business Leaders Earned 5月 21, 2024 EDT
Generative AI Fundamentals Earned 5月 20, 2024 EDT
Google Cloud Observability を使用したモニタリングとロギング Earned 5月 9, 2024 EDT
責任ある AI: Google Cloud における AI に関する原則の適用 Earned 5月 8, 2024 EDT
Google Cloud ネットワークの構築 Earned 5月 2, 2024 EDT
Compute Engine でのロード バランシングの実装 Earned 5月 2, 2024 EDT
Google Cloud Operations を使用したスケーリング Earned 5月 2, 2024 EDT
Google Cloud で実現する信頼とセキュリティ Earned 5月 2, 2024 EDT
Google Cloud によるインフラストラクチャとアプリケーションのモダナイゼーション Earned 5月 2, 2024 EDT
Google Cloud の AI を活用したイノベーション Earned 5月 2, 2024 EDT
Google Cloud によるデータ トランスフォーメーションの探求 Earned 5月 2, 2024 EDT
Google Cloud によるデジタル トランスフォーメーション Earned 5月 2, 2024 EDT
Google Cloud ネットワークの設定 Earned 7月 31, 2023 EDT
Vertex AI Studio の概要 Earned 7月 13, 2023 EDT
画像キャプション モデルの作成 Earned 7月 13, 2023 EDT
Transformer モデルと BERT モデル Earned 7月 13, 2023 EDT
Encoder-Decoder アーキテクチャ Earned 7月 13, 2023 EDT
アテンション機構 Earned 7月 12, 2023 EDT
画像生成の概要 Earned 7月 12, 2023 EDT
Generative AI Fundamentals - 日本語版 Earned 7月 12, 2023 EDT
責任ある AI の概要 Earned 7月 12, 2023 EDT
大規模言語モデルの概要 Earned 7月 12, 2023 EDT
生成 AI の概要 Earned 7月 12, 2023 EDT
Google Cloud におけるアプリ開発環境の設定 Earned 10月 2, 2022 EDT
Associate Cloud Engineer の取得に向けた準備 Earned 7月 29, 2022 EDT
Preparing for Your Professional Cloud Architect Journey - 日本語版 Earned 7月 29, 2022 EDT
柔軟性のある Google Cloud インフラストラクチャ: スケーリングと自動化 Earned 7月 4, 2022 EDT
Google Kubernetes Engine を使ってみる Earned 6月 29, 2022 EDT
信頼性に優れた Google Cloud インフラストラクチャ: 設計とプロセス Earned 4月 16, 2022 EDT
Google Cloud の基礎: コア インフラストラクチャ Earned 1月 3, 2022 EST
DEPRECATED Cloud Architecture Earned 6月 19, 2021 EDT
Google Cloud ネットワークの構築 Earned 6月 13, 2021 EDT
Google Cloud の Kubernetes Earned 6月 6, 2021 EDT
重要な Google Cloud インフラストラクチャ: 基礎 Earned 5月 11, 2021 EDT
Compute Engine でのロード バランシングの実装 Earned 5月 1, 2021 EDT
Elastic Cloud Infrastructure: Scaling and Automation Earned 4月 2, 2021 EDT
Google Cloud Platform Fundamentals: Core Infrastructure Earned 3月 9, 2021 EST

このコースでは、生成 AI モデルのデプロイと管理において MLOps チームが直面する特有の課題に対処するために必要な知識とツールを提供し、AI チームが MLOps プロセスを合理化して生成 AI プロジェクトを成功させるうえで Vertex AI がどのように役立つかを説明します。

詳細

このコースは、Dataflow を使用したサーバーレスのデータ処理に関する 3 コースシリーズのパート 1 です。この最初のコースでは、始めに Apache Beam とは何か、そして Dataflow とどのように関係しているかを復習します。次に、Apache Beam のビジョンと Beam Portability フレームワークの利点について説明します。Beam Portability フレームワークによって、デベロッパーが好みのプログラミング言語と実行バックエンドを使用できるビジョンが実現します。続いて、Dataflow によってどのように費用を節約しながらコンピューティングとストレージを分離できるか、そして識別ツール、アクセスツール、管理ツールがどのように Dataflow パイプラインと相互に機能するかを紹介します。最後に、Dataflow でそれぞれのユースケースに合った適切なセキュリティ モデルを実装する方法について学習します。

詳細

このコースでは、Google Cloud 上で本番環境の ML システムをデプロイ、評価、モニタリング、運用するための MLOps ツールとベスト プラクティスについて説明します。MLOps は、本番環境 ML システムのデプロイ、テスト、モニタリング、自動化に重点を置いた規範です。機械学習エンジニアリングの担当者は、ツールを活用して、デプロイしたモデルの継続的な改善と評価を行います。また、データ サイエンティストと協力して、あるいは自らがデータ サイエンティストとして、最も効果的なモデルを迅速かつ正確にデプロイできるようモデルを開発します。

詳細

このコースでは、本番環境で高パフォーマンスな ML システムを構築するためのコンポーネントとベスト プラクティスについて学習します。また、ML システムを構築するうえで最も一般的な考慮事項を紹介します。これには、静的トレーニング、動的トレーニング、静的な推論、動的な推論、分散型 TensorFlow、TPU などが含まれます。このコースでは、優れた予測能力にとどまらない、優れた ML システムの特性を探索することに焦点を当てています。

詳細

このコースでは、ML ワークフローに対する実践的なアプローチを取り上げます。具体的には、いくつかの ML のビジネス要件とユースケースに取り組む ML チームをケーススタディ形式で紹介します。このチームは、データ マネジメントとガバナンスに必要なツールを理解し、データの前処理に最適なアプローチを検討する必要があります。 2 つのユースケースに対して ML モデルを構築するための 3 つのオプションがチームに提示されます。このコースでは、チームの目標を達成するために、AutoML、BigQuery ML、カスタム トレーニングを使用する理由について説明します。

詳細

In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.

詳細

このコースでは、TensorFlow と Keras を使用した ML モデルの構築、ML モデルの精度の向上、スケーリングに対応した ML モデルの作成について取り上げます。

詳細

このコースでは、Vertex AI Feature Store を使用するメリット、ML モデルの精度を向上させる方法、最も有効な特徴を抽出できるデータ列の見極め方について説明します。また、BigQuery ML、Keras、TensorFlow を使用した特徴量エンジニアリングに関するコンテンツとラボも用意されています。

詳細

Excited to follow your favorite soccer/football stars on their next quest? Use GenAIus Travel Guides to learn how to interact with chat applications, master prompt engineering, understand the importance of context in AI, and work with Generative AI. Earn an exclusive Google Cloud Generative AI Credential and showcase your new skills! No prior experience needed!

詳細

「Google Cloud の ML API 用にデータを準備」コースの入門スキルバッジを獲得できるアクティビティを修了すると、 Dataprep by Trifacta を使用したデータのクリーニング、Dataflow でのデータ パイプラインの実行、Dataproc でのクラスタの作成と Apache Spark ジョブの実行、 Cloud Natural Language API、Google Cloud Speech-to-Text API、Video Intelligence API などの ML API の呼び出しに関するスキルを証明できます。

詳細

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

詳細

Google Cloud で機械学習を実装する際のベスト プラクティスには何があるでしょうか。Vertex AI とは何であり、このプラットフォームを使用してコードを 1 行も記述せずに AutoML 機械学習モデルを迅速に構築、トレーニング、デプロイするにはどうすればよいでしょうか。機械学習とはどのようなもので、どのような問題の解決に役立つのでしょうか。 Google では機械学習について独自の視点で考えています。マネージド データセット、特徴量ストア、そしてコードを 1 行も記述せずに迅速に機械学習モデルを構築、トレーニング、デプロイする手段を 1 つにまとめた統合プラットフォームを提供するとともに、データにラベル付けし、TensorFlow、SciKit Learn、Pytorch、R やその他のフレームワークを使用して Workbench ノートブックを作成できるようにすることが、Google の考える機械学習の在り方です。Google の Vertex AI プラットフォームでは、カスタムモデルをトレーニングしたり、コンポーネント パイプラインを構築したりすることもできます。さらに、オンライン予測とバッチ予測の両方を実施できます。このコースでは、候補となるユースケースを機械学習で学習できる形に変換する 5 つのフェーズについても説明し、これらのフェーズを省略しないことが重要である理由について論じます。最後に、機械学習によって増幅される可能性のあるバイアスの認識と、それを識別する方法について説明します。

詳細

Vertex AI での ML ソリューションの構築とデプロイ コースを修了して、 中級スキルバッジを獲得しましょう。このコースでは、Google Cloud の Vertex AI プラットフォーム、AutoML、カスタム トレーニング サービスを使用して、 ML モデルのトレーニング、評価、チューニング、説明、デプロイを行う方法を学びます。 このスキルバッジ コースは、データ サイエンティストと ML エンジニアのプロフェッショナルを 対象としています。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキルバッジと 最終評価チャレンジラボを完了し、デジタルバッジを獲得して ネットワークで共有しましょう。

詳細

このコースでは、まず、データ品質を向上させる方法や探索的データ分析を行う方法など、データについての議論から始めます。Vertex AI AutoML について確認し、コードを一切記述せずに ML モデルを構築、トレーニング、デプロイする方法を説明します。また、BigQuery ML のメリットを確認します。その後、ML モデルを最適化する方法、一般化とサンプリングを活用してカスタム トレーニング向けに ML モデルの品質を評価する方法を説明します。

詳細

This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.

詳細

このコースでは、データから AI へのライフサイクルをサポートする Google Cloud のビッグデータと ML のプロダクトやサービスを紹介します。また、Google Cloud で Vertex AI を使用してビッグデータ パイプラインと ML モデルを作成する際のプロセス、課題、メリットについて説明します。

詳細

Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.

詳細

This content is deprecated. Please see the latest version of the course, here.

詳細

Get hands-on practice with Google Cloud! You will compete with your peers to see who can finish this game with the most points. Speed and accuracy will be used to calculate your scores — earn points by completing the labs accurately and bonus points for speed! Be sure to click “End” where you’re done with each lab to be rewarded your points.

詳細

多くの IT 組織では、アジリティを求める開発者と、安定性を重視する運用担当者の間で、インセンティブが調整されていません。サイト信頼性エンジニアリング(SRE)は、Google が開発と運用の間のインセンティブを調整し、ミッション クリティカルな本番環境サポートを行う方法です。SRE の文化的および技術的手法を導入することで、ビジネスと IT の連携を改善できます。このコースでは、Google の SRE の主な手法を紹介し、SRE の組織的な導入を成功させるうえで IT リーダーとビジネス リーダーが果たす重要な役割について説明します。

詳細

A Business Leader in Generative AI can articulate the capabilities of core cloud Generative AI products and services and understand how they benefit organizations. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey and how they can leverage Google Cloud's generative AI products to overcome these challenges.

詳細

Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.

詳細

入門スキルバッジ コース「Google Cloud Observability を使用したモニタリングとロギング」を修了すると、 Compute Engine における仮想マシンのモニタリング、 複数プロジェクトの監視を目的とした Cloud Monitoring の利用、モニタリング機能とロギング機能の Cloud Functions への拡張、 アプリケーションに対するカスタム指標の作成と送信、カスタム指標に基づく Cloud Monitoring アラートの構成に関するスキルを実証できます。

詳細

企業における AI と ML の利用が拡大し続けるなか、責任を持ってそれを構築することの重要性も増しています。多くの企業にとっての課題は、責任ある AI と口で言うのは簡単でも、それを実践するのは難しいということです。このコースは、責任ある AI を組織で運用化する方法を学びたい方に最適です。 このコースでは、Google Cloud が責任ある AI を現在どのように運用化しているかを、ベスト プラクティスや教訓と併せて学び、責任ある AI に対する独自のアプローチを構築するためのフレームワークとして活用できるようにします。

詳細

「Google Cloud ネットワークの構築」コースを修了してスキルバッジを獲得しましょう。このコースでは、 アプリケーションをデプロイしてモニタリングするための複数の方法について学びます。具体的には、IAM ロールの確認とプロジェクト アクセスの追加 / 削除、 VPC ネットワークの作成、Compute Engine VM のデプロイとモニタリング、 SQL クエリの記述、Compute Engine での VM のデプロイとモニタリング、Kubernetes を使用した複数のデプロイ アプローチによるアプリケーションのデプロイなどです。

詳細

Compute Engine でのロード バランシングの実装 スキルバッジを獲得できる入門コースを修了すると、次のスキルを実証できます: gcloud コマンドの記述と Cloud Shell の使用、Compute Engine における仮想マシンの作成とデプロイ、 ネットワーク ロードバランサと HTTP ロードバランサの構成。 スキルバッジは、Google Cloud の プロダクトとサービスに関する習熟度を示す Google Cloud 発行の限定デジタルバッジです。 これは、インタラクティブなハンズオン環境での知識の応用力を 証明するものです。この入門コースと最終評価チャレンジラボを完了し、 スキルバッジを獲得しましょう。このスキルバッジはネットワークで共有できます。

詳細

あらゆる規模の組織が、事業運営の変革にクラウドの能力と柔軟性を活用しているなかで、クラウド リソースを効果的に管理、スケーリングすることが複雑なタスクになる可能性もあります。 ここでは、Google Cloud Operations を使用したスケーリングを通して、クラウドにおける最新の運用、信頼性、レジリエンスに関する基本的概念と、Google Cloud がこういった取り組みをどのように支援できるのかについて理解を深めます。 このコースは クラウド デジタル リーダー 学習プログラムの一部で、個人が自分の役割において成長し、ビジネスの未来を構築することを目的としています。

詳細

組織がデータやアプリケーションをクラウドへ移行する際には、新たなセキュリティ上の課題に対処することが求められます。この「Google Cloud で実現する信頼とセキュリティ」コースでは、クラウド セキュリティの基礎、およびインフラストラクチャ セキュリティに対する Google Cloud のマルチレイヤ型アプローチが持つ価値について学ぶとともに、Google がクラウドへのお客様の信頼をどのように獲得し維持しているのかについて学びます。 このコースは クラウド デジタル リーダー 学習プログラムの一部で、個人が自分の役割において成長し、ビジネスの未来を構築することを目的としています。

詳細

多くの従来型企業では、既存のシステムやアプリケーションで昨今の顧客の期待に応え続けることが難しくなっています。この場合、経営者は、老朽化した IT システムの保守を続けるのか、新たな製品やサービスに投資をするのか、選択を迫られることになります。「Google Cloud によるインフラストラクチャとアプリケーションのモダナイゼーション」ではそうした課題を明らかにするとともに、そうした課題をクラウド テクノロジーによって乗り越えるためのソリューションについて学びます。 このコースは クラウド デジタル リーダー 学習プログラムの一部で、個人が自分の役割において成長し、ビジネスの未来を構築することを目的としています。

詳細

AI と ML は、幅広い業種に急速な変革をもたらしているインフォメーション テクノロジーにおける重要な進化です。「Google Cloud の AI を活用したイノベーション」では、AI と ML を活用して組織でビジネス プロセスを変革する方法について学習します。 このコースは クラウド デジタル リーダー 学習プログラムの一部で、個人が自分の役割において成長し、ビジネスの未来を構築することを目的としています。

詳細

クラウド テクノロジーは組織に大きな価値をもたらします。クラウド テクノロジーの力をデータと組み合わせることで、その価値はさらに大きなものとなり、新しいカスタマー エクスペリエンスを提供できる可能性があります。「Google Cloud によるデータ トランスフォーメーションの探求」では、データが組織にもたらす価値と、Google Cloud でデータを有用かつアクセス可能なものにする方法を学習します。このコースは「クラウド デジタル リーダー」学習プログラムの一部で、個人が自分の役割において成長し、ビジネスの未来を構築することを目的としています。

詳細

クラウド テクノロジーとデジタル トランスフォーメーションに大きな期待が寄せられていますが、疑問点も多く残っています。 例: クラウド テクノロジーとは何か?デジタル トランスフォーメーションとは何を意味しているか?クラウド テクノロジーが組織にどう役立つのか?どこから着手するのか? このような疑問をお持ちなら、このコースはぴったりです。このコースでは、デジタル トランスフォーメーションにおいて多くの企業が直面する機会と課題のタイプについてご説明します。このデジタル トランスフォーメーションの入門コースなら、クラウド テクノロジーに関する知識を深めて自分の業務に活用するとともに、今後のビジネスの成長にも役立てていただけます。このコースは クラウド デジタル リーダー 学習プログラムの一部です。

詳細

Google Cloud ネットワークの設定コースを修了してスキルバッジを獲得しましょう。 このコースでは、Google Cloud Platform で基本的なネットワーキング タスクを実行する方法を学習します。具体的には、カスタム ネットワークの作成、サブネット ファイアウォール ルールの追加、VM の作成、そして VM 同士が通信する際のレイテンシのテストについて学びます。

詳細

このコースでは、生成 AI モデルとのやりとり、ビジネス アイデアのプロトタイプ作成、本番環境へのリリースを行うツールである Vertex AI Studio をご紹介します。現実感のあるユースケースや、興味深い講義、ハンズオンラボを通して、プロンプトの作成から成果の実現に至るまでのライフサイクルを詳細に学び、Gemini マルチモーダル アプリケーションの開発、プロンプトの設計、モデルのチューニングに Vertex AI を活用する方法を学習します。Vertex AI Studio を利用することで、生成 AI をプロジェクトに最大限に活かせるようになることを目指します。

詳細

このコースでは、ディープ ラーニングを使用して画像キャプション生成モデルを作成する方法について学習します。エンコーダやデコーダなどの画像キャプション生成モデルのさまざまなコンポーネントと、モデルをトレーニングして評価する方法を学びます。このコースを修了すると、独自の画像キャプション生成モデルを作成し、それを使用して画像のキャプションを生成できるようになります。

詳細

このコースでは、Transformer アーキテクチャと Bidirectional Encoder Representations from Transformers(BERT)モデルの概要について説明します。セルフアテンション機構をはじめとする Transformer アーキテクチャの主要コンポーネントと、それが BERT モデルの構築にどのように使用されているのかについて学習します。さらに、テキスト分類、質問応答、自然言語推論など、BERT を適用可能なその他のタスクについても学習します。このコースの推定所要時間は約 45 分です。

詳細

このコースでは、機械翻訳、テキスト要約、質問応答などのシーケンス ツー シーケンス タスクに対応する、強力かつ広く使用されている ML アーキテクチャである Encoder-Decoder アーキテクチャの概要を説明します。Encoder-Decoder アーキテクチャの主要なコンポーネントと、これらのモデルをトレーニングして提供する方法について学習します。対応するラボのチュートリアルでは、詩を生成するための Encoder-Decoder アーキテクチャの簡単な実装を、TensorFlow で最初からコーディングします。

詳細

このコースでは、アテンション機構について学習します。アテンション機構とは、ニューラル ネットワークに入力配列の重要な部分を認識させるための高度な技術です。アテンションの仕組みと、アテンションを活用して機械翻訳、テキスト要約、質問応答といったさまざまな ML タスクのパフォーマンスを改善する方法を説明します。

詳細

このコースでは拡散モデルについて説明します。拡散モデルは ML モデル ファミリーの一つで、最近、画像生成分野での有望性が示されました。拡散モデルは物理学、特に熱力学からインスピレーションを得ています。ここ数年、拡散モデルは研究と産業界の両方で広まりました。拡散モデルは、Google Cloud の最先端の画像生成モデルやツールの多くを支える技術です。このコースでは、拡散モデルの背景にある理論と、モデルを Vertex AI でトレーニングしてデプロイする方法について説明します。

詳細

「Introduction to Generative AI」、「Introduction to Large Language Models」、「Introduction to Responsible AI」の各コースを修了すると、スキルバッジを獲得できます。最終テストに合格することで、ジェネレーティブ AI の基礎概念を理解していることが証明されます。 スキルバッジは、Google Cloud のプロダクトとサービスに関する知識を認定するために Google Cloud が発行するデジタルバッジです。スキルバッジは、ソーシャル メディアの公開プロフィールを作成してそこに追加することで一般向けに共有できます。

詳細

この入門レベルのマイクロラーニング コースでは、責任ある AI の概要と重要性、および Google が責任ある AI を自社プロダクトにどのように実装しているのかについて説明します。また、Google の AI に関する 7 つの原則についても説明します。

詳細

このコースは、大規模言語モデル(LLM)とは何か、どのようなユースケースで活用できるのか、プロンプトのチューニングで LLM のパフォーマンスを高めるにはどうすればよいかについて学習する、入門レベルのマイクロ ラーニング コースです。独自の生成 AI アプリを開発する際に利用できる Google ツールも紹介します。

詳細

この入門レベルのマイクロラーニング コースでは、生成 AI の概要、利用方法、従来の機械学習の手法との違いについて説明します。独自の生成 AI アプリを作成する際に利用できる Google ツールも紹介します。

詳細

「Google Cloud におけるアプリ開発環境の設定」コースを完了すると、スキルバッジを獲得できます。このコースでは、 Cloud Storage、Identity and Access Management、Cloud Functions、Pub/Sub のテクノロジーの基本機能を使用して、ストレージ中心のクラウド インフラストラクチャを構築し接続する方法を学びます。

詳細

このコースでは、Associate Cloud Engineer 認定試験の合格を目指す方が受験の準備を進めることができます。試験範囲に含まれる Google Cloud ドメインの概要と、ドメインに関する知識を高めるための学習計画の作成方法について学習します。

詳細

このコースでは、PCA(Professional Cloud Architect)認定資格試験に向けた学習計画を作成できます。学習者は、試験の範囲を把握できます。また、試験への準備状況を把握して、個々の学習計画を作成します。

詳細

このオンデマンド速習コースでは、Google Cloud が提供する包括的で柔軟なインフラストラクチャとプラットフォーム サービスについて紹介します。動画講義、デモ、ハンズオンラボを通してさまざまなソリューションの要素について学び、実際にデプロイしてみます。これにはセキュリティを維持しながらネットワークを相互接続する方法や、ロード バランシング、自動スケーリング、インフラストラクチャの自動化、マネージド サービスも含まれます。

詳細

「Google Kubernetes Engine を使ってみる」コースへようこそ。Kubernetes にご興味をお持ちいただきありがとうございます。Kubernetes は、アプリケーションとハードウェア インフラストラクチャとの間にあるソフトウェア レイヤです。Google Kubernetes Engine は、Google Cloud 上のマネージド サービスとしての Kubernetes を提供します。 このコースでは、Google Kubernetes Engine(一般に GKE と呼ばれています)の基礎と、Google Cloud でアプリケーションをコンテナ化して実行する方法を学びます。このコースでは、まず Google Cloud の基本事項を確認します。続けて、コンテナ、Kubernetes、Kubernetes アーキテクチャ、Kubernetes オペレーションの概要について学びます。

詳細

このコースでは、実績ある設計パターンを利用して、信頼性と効率に優れたソリューションを Google Cloud で構築する方法を学習します。本コースは、Google Compute Engine を使用した構築 または Google Kubernetes Engine を使用した構築 のコースの続きで、これらのコースで取り上げているテクノロジーの実践経験があることを前提としています。参加者は、講義、設計アクティビティ、ハンズオンラボを通して、ビジネス要件と技術要件を定義し、バランスを取りながら、信頼性、可用性、安全性、費用対効果に優れた Google Cloud のデプロイを設計する方法を学びます。

詳細

Google Cloud の基礎: コア インストラクチャ では、Google Cloud に関する重要なコンセプトと用語について説明します。このコースでは動画とハンズオンラボを通じて学習を進めていきます。Google Cloud の多数のコンピューティング サービスとストレージ サービス、そしてリソースとポリシーを管理するための重要なツールについて比較しながら説明します。

詳細

この基礎レベルの クエスト は他の Qwiklabs 製品の中でもユニークです。これらのラボは、Google Cloud Certified Professional Cloud Architect 認定資格試験に出題されるトピックやサービスについて、 IT プロフェッショナルがハンズオンで演習するために作成されました。 IAM からネットワーキング、Kubernetes engine のデプロイまで、Goodle Cloud の知識が試される特定のラボで構成されています。これらのラボでの演習は スキルや能力の向上に役立ちますが、試験ガイドやその他の対策資料も参照することをお勧めします。

詳細

「Google Cloud ネットワークの構築」コースを修了してスキルバッジを獲得しましょう。このコースでは、 アプリケーションをデプロイしてモニタリングするための複数の方法について学びます。具体的には、IAM ロールの確認とプロジェクト アクセスの追加 / 削除、 VPC ネットワークの作成、Compute Engine VM のデプロイとモニタリング、 SQL クエリの記述、Compute Engine での VM のデプロイとモニタリング、Kubernetes を使用した複数のデプロイ アプローチによるアプリケーションのデプロイなどです。

詳細

Kubernetes は最も人気のあるコンテナ オーケストレーション システムであり、Google Kubernetes Engine は特に Google Cloud でマネージド Kubernetes Deployment をサポートするよう 設計されています。この上級レベルのコースでは、 Docker イメージとコンテナを構成し、本格的な Kubernetes Engine アプリケーションをデプロイする実践演習を行います。 また、コンテナ オーケストレーションを独自のワークフローに統合するために必要な 実践的なスキルを学びます。 ハンズオン チャレンジラボを受講して、 スキルを証明し、知識を確認することもできます。このコースの修了後、 Google Cloud での Kubernetes アプリケーションのデプロイコースの 最後にあるチャレンジラボを追加で完了して、Google Cloud の限定デジタルバッジを獲得しましょう。

詳細

このオンデマンド速習コースでは、Google Cloud で提供される包括的かつ柔軟なインフラストラクチャとプラットフォームのサービスについて、Compute Engine を中心に紹介します。受講者は、動画講義、デモ、ハンズオンラボを通してさまざまなソリューションの各要素について学習し、実際のデプロイを演習します。これらの要素には、ネットワークや仮想マシン、アプリケーション サービスなどのインフラストラクチャ コンポーネントが含まれます。コンソールと Cloud Shell を使用して Google Cloud を運用する方法についても学習します。また、クラウド アーキテクトの役割、インフラストラクチャ設計の方法、Virtual Private Cloud(VPC)を使用した仮想ネットワークの構成、プロジェクト、ネットワーク、サブネットワーク、IP アドレス、ルート、ファイアウォール ルールについても学習します。

詳細

Compute Engine でのロード バランシングの実装 スキルバッジを獲得できる入門コースを修了すると、次のスキルを実証できます: gcloud コマンドの記述と Cloud Shell の使用、Compute Engine における仮想マシンの作成とデプロイ、 ネットワーク ロードバランサと HTTP ロードバランサの構成。 スキルバッジは、Google Cloud の プロダクトとサービスに関する習熟度を示す Google Cloud 発行の限定デジタルバッジです。 これは、インタラクティブなハンズオン環境での知識の応用力を 証明するものです。この入門コースと最終評価チャレンジラボを完了し、 スキルバッジを獲得しましょう。このスキルバッジはネットワークで共有できます。

詳細

This course has been updated, please enroll in the new Elastic Google Cloud Infrastructure: Scaling and Automation.

詳細

This content is deprecated. Please see the latest version of the course, here.

詳細