가입 로그인

Nikhil Wani

회원 가입일: 2022

실버 리그

7576포인트
생성형 AI 에이전트: 조직 혁신 Earned 6월 6, 2025 EDT
생성형 AI 앱: 업무 혁신 Earned 6월 4, 2025 EDT
생성형 AI: 환경 살펴보기 Earned 6월 2, 2025 EDT
생성형 AI: 기본 개념 이해 Earned 5월 30, 2025 EDT
생성형 AI: 챗봇 그 이상의 가치 Earned 5월 29, 2025 EDT
책임감 있는 AI 소개 Earned 7월 31, 2024 EDT
Transformer 모델 및 BERT 모델 Earned 10월 3, 2023 EDT
인코더-디코더 아키텍처 Earned 10월 3, 2023 EDT
어텐션 메커니즘 Earned 10월 3, 2023 EDT
Generative AI Fundamentals Earned 10월 3, 2023 EDT
대규모 언어 모델 소개 Earned 9월 11, 2023 EDT
필수 Google Cloud 인프라: 기초 Earned 3월 29, 2023 EDT
Google Cloud 기초: 핵심 인프라 Earned 12월 27, 2022 EST
Preparing for Your Associate Cloud Engineer Journey Earned 11월 13, 2022 EST

'생성형 AI 에이전트: 조직 혁신'은 생성형 AI 리더 학습 과정의 다섯 번째이자 마지막 과정입니다. 이 과정에서는 조직이 커스텀 생성형 AI 에이전트를 사용하여 어떻게 특정 비즈니스 과제를 해결할 수 있는지 살펴봅니다. 모델, 추론 루프, 도구와 같은 에이전트의 구성요소를 살펴보며 기본적인 생성형 AI 에이전트를 빌드하는 실무형 실습을 진행합니다.

자세히 알아보기

'생성형 AI 앱: 업무 혁신'은 생성형 AI 리더 학습 과정의 네 번째 과정입니다. 이 과정에서는 Workspace를 위한 Gemini, NotebookLM 등 Google의 생성형 AI 애플리케이션을 소개합니다. 그라운딩, 검색 증강 생성, 효과적인 프롬프트 작성, 자동화된 워크플로 구축 등의 개념을 안내합니다.

자세히 알아보기

'생성형 AI: 환경 살펴보기'는 생성형 AI 리더 학습 과정의 세 번째 과정입니다. 생성형 AI는 업무 방식을 비롯해 주변 세계와 상호작용하는 방식에 변화를 일으키고 있습니다. 리더로서 생성형 AI를 활용하여 실질적인 비즈니스 성과를 얻으려면 어떻게 해야 할까요? 이 과정에서는 생성형 AI 솔루션 빌드의 다양한 계층, Google Cloud 제품, 솔루션을 선택할 때 고려해야 할 요소를 살펴봅니다.

자세히 알아보기

'생성형 AI: 기본 개념 이해'는 생성형 AI 리더 학습 과정의 두 번째 과정입니다. 이 과정에서는 생성형 AI의 기본 개념을 이해하기 위해 AI, ML, 생성형 AI의 차이점을 살펴보고 다양한 데이터 유형에서 생성형 AI로 어떻게 비즈니스 과제를 해결할 수 있는지 알아봅니다. 파운데이션 모델의 제한사항과 책임감 있고 안전한 AI 개발 및 배포의 주요 과제를 해결할 수 있도록 Google Cloud 전략에 관한 인사이트도 제공합니다.

자세히 알아보기

'생성형 AI: 챗봇 그 이상의 가치'는 생성형 AI 리더 학습 과정의 첫 번째 과정이며 요구되는 기본 요건이 없습니다. 이 과정은 챗봇에 대한 기본적인 이해를 넘어 조직을 위한 생성형 AI의 진정한 잠재력을 살펴보는 것을 목표로 합니다. 생성형 AI의 강력한 기능을 활용하는 데 중요한 파운데이션 모델 및 프롬프트 엔지니어링과 같은 개념을 살펴봅니다. 또한 조직을 위한 성공적인 생성형 AI 전략을 개발할 때 고려해야 할 중요한 사항도 안내합니다.

자세히 알아보기

책임감 있는 AI란 무엇이고 이것이 왜 중요하며 Google에서는 어떻게 제품에 책임감 있는 AI를 구현하고 있는지 설명하는 입문용 마이크로 학습 과정입니다. Google의 7가지 AI 원칙도 소개합니다.

자세히 알아보기

이 과정은 Transformer 아키텍처와 BERT(Bidirectional Encoder Representations from Transformers) 모델을 소개합니다. 셀프 어텐션 메커니즘 같은 Transformer 아키텍처의 주요 구성요소와 이 아키텍처가 BERT 모델 빌드에 사용되는 방식에 관해 알아봅니다. 또한 텍스트 분류, 질문 답변, 자연어 추론과 같이 BERT를 활용할 수 있는 다양한 작업에 대해서도 알아봅니다. 이 과정은 완료하는 데 대략 45분이 소요됩니다.

자세히 알아보기

이 과정은 기계 번역, 텍스트 요약, 질의 응답과 같은 시퀀스-투-시퀀스(Seq2Seq) 작업에 널리 사용되는 강력한 머신러닝 아키텍처인 인코더-디코더 아키텍처에 대한 개요를 제공합니다. 인코더-디코더 아키텍처의 기본 구성요소와 이러한 모델의 학습 및 서빙 방법에 대해 알아봅니다. 해당하는 실습 둘러보기에서는 TensorFlow에서 시를 짓는 인코더-디코더 아키텍처를 처음부터 간단하게 구현하는 코딩을 해봅니다.

자세히 알아보기

이 과정에서는 신경망이 입력 시퀀스의 특정 부분에 집중할 수 있도록 하는 강력한 기술인 주목 메커니즘을 소개합니다. 주목 메커니즘의 작동 방식과 이 메커니즘을 다양한 머신러닝 작업(기계 번역, 텍스트 요약, 질문 답변 등)의 성능을 개선하는 데 활용하는 방법을 알아봅니다.

자세히 알아보기

Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.

자세히 알아보기

이 과정은 입문용 마이크로 학습 과정으로, 대규모 언어 모델(LLM)이란 무엇이고, LLM을 활용할 수 있는 사용 사례로는 어떤 것이 있으며, 프롬프트 조정을 사용해 LLM 성능을 개선하는 방법은 무엇인지 알아봅니다. 또한 자체 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.

자세히 알아보기

이 속성 주문형 과정은 참가자에게 Google Cloud에서 제공하는 포괄적이고 유연한 인프라 및 플랫폼 서비스를 Compute Engine을 중심으로 소개합니다. 참가자는 동영상 강의, 데모, 실무형 실습을 통해 네트워크, 가상 머신, 애플리케이션 서비스와 같은 인프라 구성요소를 포함한 솔루션 요소를 탐색하고 배포해 볼 수 있습니다. Console과 Cloud Shell을 통해 Google Cloud를 사용하는 방법을 학습합니다. 또한 클라우드 설계자의 역할, 인프라 설계 접근 방식은 물론 Virtual Private Cloud(VPC), 프로젝트, 네트워크, 서브네트워크, IP 주소, 경로, 방화벽 규칙을 사용한 가상 네트워킹 구성에 대해 알아봅니다.

자세히 알아보기

Google Cloud 기초: 핵심 인프라 과정은 Google Cloud 사용에 관한 중요한 개념 및 용어를 소개합니다. 이 과정에서는 동영상 및 실무형 실습을 통해 중요한 리소스 및 정책 관리 도구와 함께 Google Cloud의 다양한 컴퓨팅 및 스토리지 서비스를 살펴보고 비교합니다.

자세히 알아보기

This course helps you structure your preparation for the Associate Cloud Engineer exam. You will learn about the Google Cloud domains covered by the exam and how to create a study plan to improve your domain knowledge.

자세히 알아보기