Rejoindre Se connecter

Manoj Kumar

Date d'abonnement : 2022

Ligue d'Or

40420 points
Créer des applications d'IA concrètes avec Gemini et Imagen Earned juin 20, 2025 EDT
Applications d'IA générative : changez votre façon de travailler Earned juin 13, 2025 EDT
IA générative : se familiariser avec le domaine Earned juin 13, 2025 EDT
IA générative : découvrir les concepts fondamentaux Earned juin 13, 2025 EDT
Conception de requêtes dans Vertex AI Earned juin 13, 2025 EDT
Google Cloud: Prompt Engineering Guide Earned juin 3, 2025 EDT
IA générative : au-delà du chatbot Earned juin 1, 2025 EDT
Agents d'IA générative : transformer l'entreprise Earned mai 30, 2025 EDT
Achieving Business Outcomes with Looker Earned mai 29, 2025 EDT
Looker Explained Earned mai 29, 2025 EDT
Traitement des données sans serveur avec Dataflow : principes de base Earned mai 26, 2025 EDT
Empower Gen AI apps with tool use Earned mai 13, 2025 EDT
Data Lake Modernization on Google Cloud: Intro to Data Lakes Earned avr. 24, 2025 EDT
Gemini pour les architectes cloud Earned avr. 18, 2025 EDT
Gemini pour les développeurs d'applications Earned avr. 18, 2025 EDT
Integrate Vertex AI Search and Conversation into Voice and Chat Apps Earned avr. 24, 2024 EDT
Text Prompt Engineering Techniques Earned avr. 22, 2024 EDT
Data Lake Modernization on Google Cloud: Data Governance Earned avr. 2, 2024 EDT
Modèles Transformer et modèle BERT Earned mars 26, 2024 EDT
Architecture encodeur/décodeur Earned mars 21, 2024 EDT
Mécanisme d'attention Earned mars 10, 2024 EDT
Présentation des grands modèles de langage Earned sept. 28, 2023 EDT
Présentation de l'IA générative Earned sept. 21, 2023 EDT
Moderniser des lacs de données et des entrepôts de données avec Google Cloud Earned déc. 18, 2022 EST
Google Cloud Big Data and Machine Learning Fundamentals - Français Earned nov. 22, 2022 EST

Obtenez le badge de compétence de niveau débutant "Créer des applications d'IA concrètes avec Gemini et Imagen" pour démontrer vos compétences dans les domaines suivants : reconnaissance d'image, traitement du langage naturel, génération d'images à l'aide des puissants modèles Gemini et Imagen de Google, et déploiement d'applications sur la plate-forme Vertex AI.

En savoir plus

Le cours "Applications d'IA générative : changez votre façon de travailler" est le quatrième du parcours de formation "Leader en IA générative". Ce cours présente les applications d'IA générative de Google, telles que Gemini pour Workspace et NotebookLM. Il vous guide à travers des concepts comme l'ancrage, la génération augmentée par récupération, la création de requêtes efficaces et la conception de workflows automatisés.

En savoir plus

Le cours "IA générative : se familiariser avec le domaine" est le troisième du parcours de formation "Leader en IA générative". L'IA générative change notre façon de travailler et d'interagir avec le monde autour de nous. En tant que responsable, comment pouvez-vous exploiter son potentiel pour obtenir des résultats commerciaux concrets ? Dans ce cours, vous allez découvrir les différentes couches qui composent une solution d'IA générative, les offres de Google Cloud et les facteurs à prendre en compte au moment de choisir une solution.

En savoir plus

Le cours "IA générative : découvrir les concepts fondamentaux" est le deuxième du parcours de formation "Leader en IA générative". Ce cours vous permettra de découvrir les concepts fondamentaux de l'IA générative en examinant les différences entre l'IA, le ML et l'IA générative. Vous comprendrez également comment l'IA générative permet de relever les défis métier à l'aide des différents types de données. Enfin, vous découvrirez les stratégies de Google Cloud pour gérer les limites des modèles de fondation et quelles sont les grandes problématiques du développement et du déploiement d'une IA responsable et sécurisée.

En savoir plus

Terminez le cours d'introduction Conception de requêtes dans Vertex AI pour recevoir un badge démontrant vos compétences dans les domaines suivants : le prompt engineering (ingénierie des requêtes), l'analyse d'images et les techniques d'IA générative multimodale dans Vertex AI. Découvrez comment élaborer des requêtes efficaces, guider les résultats de l'IA générative et appliquer des modèles Gemini à des scénarios marketing concrets. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.

En savoir plus

Google Cloud : Prompt Engineering Guide examines generative AI tools, how they work. We'll explore how to combine Google Cloud knowledge with prompt engineering to improve Gemini responses.

En savoir plus

Le cours "IA générative : au-delà du chatbot" est le premier du parcours de formation "Leader en IA générative" et n'a aucun prérequis. Ce cours vise à approfondir votre compréhension de base des chatbots afin de révéler le véritable potentiel de l'IA générative pour votre entreprise. Vous découvrirez des concepts tels que les modèles de fondation et le prompt engineering (ingénierie des requêtes), qui sont essentiels pour exploiter toute la puissance de l'IA générative. Ce cours vous aidera également à identifier les facteurs à prendre en compte pour développer une stratégie d'IA générative efficace pour votre entreprise.

En savoir plus

Le cours "Agents d'IA générative : transformer l'entreprise" est le cinquième et dernier du parcours de formation "Leader en IA générative". Ce cours aborde la façon dont les entreprises peuvent utiliser des agents d'IA générative personnalisés pour relever des défis métier spécifiques. Des exercices pratiques vous apprendront à créer un agent d'IA générative de base tout en découvrant les composants de ces agents, comme les modèles, les boucles de raisonnement et les outils.

En savoir plus

In this course, we’ll show you how organizations are aligning their BI strategy to most effectively achieve business outcomes with Looker. We'll follow four iterative steps: Plan, Build, Launch, Grow, and provide resources to take into your own services delivery to build Looker with the goal of achieving business outcomes.

En savoir plus

By the end of this course, you should be able to articulate Looker's value propositions and what makes it different from other analytics tools in the market. You should also be able to explain how Looker works, and explain the standard components of successful service delivery.

En savoir plus

Ce cours est le premier d'une série en trois volets sur le traitement des données sans serveur avec Dataflow. Dans ce premier cours, nous allons commencer par rappeler ce qu'est Apache Beam et sa relation avec Dataflow. Ensuite, nous aborderons la vision d'Apache Beam et les avantages de son framework de portabilité, qui permet aux développeurs d'utiliser le langage de programmation et le backend d'exécution de leur choix. Nous vous montrerons aussi comment séparer le calcul du stockage et économiser de l'argent grâce à Dataflow, puis nous examinerons les interactions entre les outils de gestion de l'identification et des accès avec vos pipelines Dataflow. Enfin, nous verrons comment implémenter le modèle de sécurité adapté à votre cas d'utilisation sur Dataflow.

En savoir plus

An LLM-based application can process language in a way that resembles thought. But if you want to extend its capabilities to take actions by running other functions you have coded, you will need to use function calling. This can also be referred to as tool use. Additionally, you can give a model the ability to search Google or search a data store of documents to ground its responses. In other words, to base its answers on that information. In this course, you’ll explore these concepts.

En savoir plus

Welcome to Intro to Data Lakes, where we discuss how to create a scalable and secure data lake on Google Cloud that allows enterprises to ingest, store, process, and analyze any type or volume of full fidelity data.

En savoir plus

Dans ce cours, vous découvrirez comment Gemini, un collaborateur de Google Cloud optimisé par l'IA générative, aide les administrateurs à provisionner l'infrastructure. Vous apprendrez à demander à Gemini d'expliquer l'infrastructure, de déployer les clusters GKE et de mettre à jour l'infrastructure existante. À l'aide d'un atelier pratique, vous verrez en quoi Gemini améliore le workflow de déploiement GKE. Duet AI a été renommé "Gemini", notre modèle nouvelle génération.

En savoir plus

Dans ce cours, vous découvrirez comment Gemini, un collaborateur de Google Cloud optimisé par l'IA générative, aide les développeurs à créer des applications. Vous apprendrez à demander à Gemini d'expliquer du code, de recommander des services Google Cloud et de générer du code pour vos applications. À l'aide d'un atelier pratique, vous verrez en quoi Gemini améliore le workflow de développement d'applications. Duet AI a été renommé Gemini, notre modèle nouvelle génération.

En savoir plus

This course on Integrate Vertex AI Search and Conversation into Voice and Chat Apps is composed of a set of labs to give you a hands on experience to interacting with new Generative AI technologies. You will learn how to create end-to-end search and conversational experiences by following examples. These technologies complement predefined intent-based chat experiences created in Dialogflow with LLM-based, generative answers that can be based on your own data. Also, they allow you to porvide enterprise-grade search experiences for internal and external websites to search documents, structure data and public websites.

En savoir plus

Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.

En savoir plus

Welcome to Data Governance, where we discuss how to implement data governance on Google Cloud.

En savoir plus

Ce cours présente l'architecture Transformer et le modèle BERT (Bidirectional Encoder Representations from Transformers). Vous découvrirez quels sont les principaux composants de l'architecture Transformer, tels que le mécanisme d'auto-attention, et comment ils sont utilisés pour créer un modèle BERT. Vous verrez également les différentes tâches pour lesquelles le modèle BERT peut être utilisé, comme la classification de texte, les questions-réponses et l'inférence en langage naturel. Ce cours dure environ 45 minutes.

En savoir plus

Ce cours offre un aperçu de l'architecture encodeur/décodeur, une architecture de machine learning performante souvent utilisée pour les tâches "seq2seq", telles que la traduction automatique, la synthèse de texte et les questions-réponses. Vous découvrirez quels sont les principaux composants de l'architecture encodeur/décodeur, et comment entraîner et exécuter ces modèles. Dans le tutoriel d'atelier correspondant, vous utiliserez TensorFlow pour coder une implémentation simple de cette architecture afin de générer un poème en partant de zéro.

En savoir plus

Ce cours présente le mécanisme d'attention, une technique efficace permettant aux réseaux de neurones de se concentrer sur des parties spécifiques d'une séquence d'entrée. Vous découvrirez comment fonctionne l'attention et comment l'utiliser pour améliorer les performances de diverses tâches de machine learning, dont la traduction automatique, la synthèse de texte et les réponses aux questions.

En savoir plus

Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce que sont les grands modèles de langage (LLM). Il inclut des cas d'utilisation et décrit comment améliorer les performances des LLM grâce au réglage des requêtes. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.

En savoir plus

Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA générative, décrit à quoi elle sert et souligne ce qui la distingue des méthodes de machine learning traditionnel. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.

En savoir plus

Les lacs de données et les entrepôts de données sont les deux principaux composants des pipelines de données. Ce cours présente des cas d'utilisation de chaque type de stockage, ainsi que les détails techniques des solutions de lacs et d'entrepôts de données disponibles sur Google Cloud. Il décrit également le rôle des ingénieurs de données et les avantages d'un pipeline de données réussi sur les opérations commerciales, avant d'expliquer pourquoi il est important de procéder à l'ingénierie des données dans un environnement cloud. Il s'agit du premier cours de la série "Ingénierie des données sur Google Cloud". Après l'avoir terminé, inscrivez-vous au cours "Créer des pipelines de données en batch sur Google Cloud".

En savoir plus

Ce cours présente les produits et services Google Cloud pour le big data et le machine learning compatibles avec le cycle de vie "des données à l'IA". Il explore les processus, défis et avantages liés à la création d'un pipeline de big data et de modèles de machine learning avec Vertex AI sur Google Cloud.

En savoir plus