加入 登录

Akshay Attri

成为会员时间:2022

青铜联赛

20159 积分
Reinforcement Learning with Human Feedback (RLHF) Earned Sep 4, 2025 EDT
Improve Performance by Fine-Tuning Foundation Models Earned Sep 4, 2025 EDT
Model evaluation on Vertex AI Earned Sep 1, 2025 EDT
Enterprise Search with Grounding Earned May 8, 2024 EDT
Machine Learning Operations (MLOps): Getting Started Earned May 3, 2024 EDT
建立圖像說明生成模型 Earned Apr 29, 2024 EDT
注意力機制 Earned Apr 20, 2024 EDT
Application Development with Cloud Run Earned Mar 29, 2024 EDT
Build Custom Processors with Document AI Earned Mar 12, 2024 EDT
在 Google Cloud 部署 Kubernetes 應用程式 Earned Mar 8, 2024 EST
使用 Firebase 開發無伺服器應用程式 Earned Mar 7, 2024 EST
運用 Cloud Run 開發無伺服器應用程式 Earned Mar 7, 2024 EST
App Deployment, Debugging, and Performance Earned Mar 1, 2024 EST

RHLF is a technique for fine-tuning language models by incorporating human feedback into the training process. This course explores how you can use RHLF to improve the performance of language models on various tasks, such as text summarization and question answering.

了解详情

Model tuning is an effective way to customize large models to your tasks. It's a key step to improve the model's quality and efficiency. Model tuning provides benefits such as higher quality results for your specific tasks and increased model robustness. You learn some of the tuning options available in Vertex AI and when to use them.

了解详情

This course delves into the complexities of assessing the quality of large language model outputs. It examines the challenges enterprises face due to the subjective and sometimes incorrect nature of LLM responses, including hallucinations and inconsistent results. The course introduces various evaluation metrics for different tasks like classification, text generation, and question answering, such as Accuracy, Precision, Recall, F1 score, ROUGE, BLEU, and Exact Match. It also explores evaluation methods offered by Vertex AI LLM Evaluation Services, including computation-based, autorater, and human evaluation, providing insights into their application and benefits. Finally, the module covers how to unit test LLM applications within Vertex AI.

了解详情

This course equips students with the knowledge and skills to leverage advanced search engine functionalities beyond basic keyword queries. Through exploring adapters, grounding techniques, and the capabilities of powerful language models, participants will learn to design and implement effective solutions for improved search quality, information relevance, and contextual understanding.

了解详情

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

了解详情

本課程說明如何使用深度學習來建立圖像說明生成模型。您將學習圖像說明生成模型的各個不同組成部分,例如編碼器和解碼器,以及如何訓練和評估模型。在本課程結束時,您將能建立自己的圖像說明生成模型,並使用模型產生圖像說明文字。

了解详情

本課程將介紹注意力機制,說明這項強大技術如何讓類神經網路專注於輸入序列的特定部分。此外,也將解釋注意力的運作方式,以及如何使用注意力來提高各種機器學習任務的成效,包括機器翻譯、文字摘要和回答問題。

了解详情

This course introduces you to fundamentals, practices, capabilities and tools applicable to modern cloud-native application development using Google Cloud Run. Through a combination of lectures, hands-on labs, and supplemental materials, you will learn how to on Google Cloud using Cloud Run.design, implement, deploy, secure, manage, and scale applications

了解详情

Earn a skill badge by completing the Build Custom Processors with Document AI course. You learn how to extract data and classify documents by creating custom ML models specific to your business needs. This course teaches the foundation skills of building your own processors, working with optical character recognition, form parsing, processor creation, and uptraining the DocumentAI model.

了解详情

完成 在 Google Cloud 部署 Kubernetes 應用程式 技能徽章中階課程,即可證明您具備下列技能: 設定及建構 Docker 容器映像檔、建立及管理 Google Kubernetes Engine (GKE) 叢集、運用 kubectl 有效 管理叢集,以及運用強大的持續推送軟體更新做法來部署 Kubernetes 應用程式。 「技能徽章」是 Google Cloud 核發的獨家數位徽章,用於肯定您在 Google Cloud 產品和服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關知識。 完成這個課程及結業評量挑戰研究室,即可取得技能徽章並與親友分享。

了解详情

完成 使用 Firebase 開發無伺服器應用程式 技能徽章中階課程, 即可證明您具備下列技能:使用 Firebase 架構及建構無伺服器的網頁應用程式、 運用 Firestore 管理資料庫、使用 Cloud Build 自動部署內容, 以及將 Google 助理功能整合至應用程式。 「技能徽章」是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品與服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關知識。完成 本課程及結業評量挑戰研究室,即可取得技能徽章 並與親友分享。

了解详情

完成 運用 Cloud Run 開發無伺服器應用程式 技能徽章中階課程, 即可證明您具備下列技能:整合 Cloud Run 和 Cloud Storage 以管理資料、 使用 Cloud Run 和 Pub/Sub 架構可復原的非同步系統、 使用 Cloud Run 建構 REST API 閘道,以及在 Cloud Run 建構及部署服務。 「技能徽章」是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品與服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關知識。完成 本課程及結業評量挑戰研究室,即可取得技能徽章 並與親友分享。

了解详情

In this course, application developers learn how to design and develop cloud-native applications that seamlessly integrate components from the Google Cloud ecosystem. Through a combination of presentations, demos, and hands-on labs, participants learn how to create repeatable deployments by treating infrastructure as code, choose the appropriate application execution environment for an application, and monitor application performance. Completing one version of each lab is required. Each lab is available in Node.js. In most cases, the same labs are also provided in Python or Java. You may complete each lab in whichever language you prefer.

了解详情