Gabung Login

Akshay Attri

Menjadi anggota sejak 2022

Bronze League

20159 poin
Reinforcement Learning with Human Feedback (RLHF) Earned Sep 4, 2025 EDT
Improve Performance by Fine-Tuning Foundation Models Earned Sep 4, 2025 EDT
Model evaluation on Vertex AI Earned Sep 1, 2025 EDT
Enterprise Search with Grounding Earned Mei 8, 2024 EDT
Machine Learning Operations (MLOps): Getting Started Earned Mei 3, 2024 EDT
Membuat Model Pemberian Teks pada Gambar Earned Apr 29, 2024 EDT
Mekanisme Atensi Earned Apr 20, 2024 EDT
Application Development with Cloud Run Earned Mar 29, 2024 EDT
Build Custom Processors with Document AI Earned Mar 12, 2024 EDT
Men-deploy Aplikasi Kubernetes di Google Cloud Earned Mar 8, 2024 EST
Mengembangkan Aplikasi Serverless dengan Firebase Earned Mar 7, 2024 EST
Mengembangkan Aplikasi Serverless di Cloud Run Earned Mar 7, 2024 EST
App Deployment, Debugging, and Performance Earned Mar 1, 2024 EST

RHLF is a technique for fine-tuning language models by incorporating human feedback into the training process. This course explores how you can use RHLF to improve the performance of language models on various tasks, such as text summarization and question answering.

Pelajari lebih lanjut

Model tuning is an effective way to customize large models to your tasks. It's a key step to improve the model's quality and efficiency. Model tuning provides benefits such as higher quality results for your specific tasks and increased model robustness. You learn some of the tuning options available in Vertex AI and when to use them.

Pelajari lebih lanjut

This course delves into the complexities of assessing the quality of large language model outputs. It examines the challenges enterprises face due to the subjective and sometimes incorrect nature of LLM responses, including hallucinations and inconsistent results. The course introduces various evaluation metrics for different tasks like classification, text generation, and question answering, such as Accuracy, Precision, Recall, F1 score, ROUGE, BLEU, and Exact Match. It also explores evaluation methods offered by Vertex AI LLM Evaluation Services, including computation-based, autorater, and human evaluation, providing insights into their application and benefits. Finally, the module covers how to unit test LLM applications within Vertex AI.

Pelajari lebih lanjut

This course equips students with the knowledge and skills to leverage advanced search engine functionalities beyond basic keyword queries. Through exploring adapters, grounding techniques, and the capabilities of powerful language models, participants will learn to design and implement effective solutions for improved search quality, information relevance, and contextual understanding.

Pelajari lebih lanjut

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

Pelajari lebih lanjut

Kursus ini menjelaskan cara membuat model keterangan gambar menggunakan deep learning. Anda akan belajar tentang berbagai komponen model keterangan gambar, seperti encoder dan decoder, serta cara melatih dan mengevaluasi model. Pada akhir kursus ini, Anda akan dapat membuat model keterangan gambar Anda sendiri dan menggunakannya untuk menghasilkan teks bagi gambar.

Pelajari lebih lanjut

Dalam kursus ini Anda akan diperkenalkan dengan mekanisme atensi, yakni teknik efektif yang membuat jaringan neural berfokus pada bagian tertentu urutan input. Anda akan mempelajari cara kerja atensi, cara penggunaannya untuk meningkatkan performa berbagai tugas machine learning, termasuk terjemahan mesin, peringkasan teks, dan menjawab pertanyaan.

Pelajari lebih lanjut

This course introduces you to fundamentals, practices, capabilities and tools applicable to modern cloud-native application development using Google Cloud Run. Through a combination of lectures, hands-on labs, and supplemental materials, you will learn how to on Google Cloud using Cloud Run.design, implement, deploy, secure, manage, and scale applications

Pelajari lebih lanjut

Earn a skill badge by completing the Build Custom Processors with Document AI course. You learn how to extract data and classify documents by creating custom ML models specific to your business needs. This course teaches the foundation skills of building your own processors, working with optical character recognition, form parsing, processor creation, and uptraining the DocumentAI model.

Pelajari lebih lanjut

Selesaikan badge keahlian Men-deploy Aplikasi Kubernetes di Google Cloud tingkat menengah untuk menunjukkan keterampilan dalam hal berikut ini: mengonfigurasi dan membangun image container Docker, membuat dan mengelola cluster Google Kubernetes Engine (GKE), memanfaatkan kubectl untuk pengelolaan cluster yang efisien, dan men-deploy aplikasi Kubernetes dengan praktik continuous delivery (CD) yang andal. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan yang interaktif. Selesaikan kursus badge keahlian ini dan penilaian akhir challenge lab untuk menerima badge keahlian yang dapat Anda bagikan dengan jaringan Anda.

Pelajari lebih lanjut

Selesaikan badge keahlian tingkat menengah Mengembangkan Aplikasi Serverless dengan Firebase untuk menunjukkan keterampilan dalam hal berikut ini: membuat arsitektur dan membangun aplikasi web serverless dengan Firebase, memanfaatkan pengelolaan database Firestore, mengotomatiskan proses deployment menggunakan Cloud Build, dan mengintegrasikan fungsi Asisten Google ke dalam aplikasi. Badge keahlian merupakan badge digital eksklusif yang diberikan oleh Google Cloud sebagian pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan kursus badge keahlian ini dan challenge lab penilaian akhir untuk menerima badge keahlian yang dapat Anda bagikan ke jaringan Anda.

Pelajari lebih lanjut

Selesaikan badge keahlian Mengembangkan Aplikasi Serverless di Cloud Run untuk menunjukkan keterampilan Anda dalam hal berikut: mengintegrasikan Cloud Run dengan Cloud Storage untuk pengelolaan data, membangun sistem asinkron yang tangguh menggunakan Cloud Run dan Pub/Sub, membuat gateway REST API yang didukung Cloud Run, dan membangun serta men-deploy layanan di Cloud Run. Badge keahlian merupakan badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan kursus badge keahlian ini dan challenge lab penilaian akhir untuk menerima badge keahlian yang dapat Anda bagikan kepada jaringan Anda.

Pelajari lebih lanjut

In this course, application developers learn how to design and develop cloud-native applications that seamlessly integrate components from the Google Cloud ecosystem. Through a combination of presentations, demos, and hands-on labs, participants learn how to create repeatable deployments by treating infrastructure as code, choose the appropriate application execution environment for an application, and monitor application performance. Completing one version of each lab is required. Each lab is available in Node.js. In most cases, the same labs are also provided in Python or Java. You may complete each lab in whichever language you prefer.

Pelajari lebih lanjut