Avi Srivastava
成为会员时间:2022
白银联赛
55120 积分
成为会员时间:2022
在本課程中,您會學到 Google Cloud 上的資料工程、資料工程師的角色與職責,以及這些內容如何對應至 Google Cloud 提供的服務。您也將瞭解處理資料工程難題的許多方法。
Earn a skill badge by completing the Get Started with Cloud Storage skill badge course, where you learn how to create a Cloud Storage bucket, how to use the Cloud Storage command line, and how to use Bucket Lock to protect objects in a bucket.
完成「開始使用 Pub/Sub」任務,即可獲得 技能徽章。 技能徽章課程,您將瞭解如何透過 Cloud 控制台使用 Pub/Sub、 如何使用 Cloud Scheduler 工作節省心力,並透過 Pub/Sub Lite 節省擷取大量事件 的費用。
Earn a skill badge by completing the Networking Fundamentals on Google Cloud quest, where you learn how to work with VPC networks and load balancers on Google Cloud. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this Skill Badge, and the final assessment challenge lab, to receive a digital badge that you can share with your network.
Complete the introductory Use APIs to Work with Cloud Storage skill badge to demonstrate skills in the following: using APIs to work with Cloud Storage resources, including the Cloud Storage API.
完成「以串流方式將分析資料傳入 BigQuery」任務,即可獲得技能徽章。 您將結合使用 Pub/Sub、Dataflow 和 BigQuery,以串流方式傳送 資料以供分析。 「技能徽章」是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品和服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關 知識。完成這個技能徽章課程和結業評量挑戰實驗室之後, 即可取得技能徽章並與他人分享。
Complete the introductory Monitoring in Google Cloud skill badge course to demonstrate skills in the following: using Cloud Monitoring tools to monitor resources on Google Cloud.
Complete the introductory Monitor and Manage Google Cloud Resources skill badge to demonstrate skills in the following: granting and revoking IAM permissions; installing monitoring and logging agents; creating, deploying, and testing an event-driven Cloud Run function.
本課程介紹 Google Cloud 中的 AI 和機器學習 (ML) 服務。這些服務可建構預測式和生成式 AI 專案。我們將帶您探索「從資料到 AI」生命週期中適用的技術、產品和工具,包括 AI 基礎、開發選項及解決方案。課程目的是藉由生動的學習體驗與實作練習,增進數據資料學家、AI 開發人員和機器學習工程師的技能與知識。
Complete the intermediate Perform Predictive Data Analysis in BigQuery skill badge course to demonstrate skills in the following: creating datasets in BigQuery by importing CSV and JSON files; harnessing the power of BigQuery with sophisticated SQL analytical concepts, including using BigQuery ML to train an expected goals model on soccer event data and evaluate the impressiveness of World Cup goals.
Earn a skill badge by completing the Analyze Speech and Language with Google APIs quest, where you learn how to use the Natural Language and Speech APIs in real-world settings.
Complete the introductory Integrate BigQuery Data and Google Workspace using Apps Script skill badge course to demonstrate skills in connecting Workspace products with BigQuery via AppSheet.
Earn the introductory skill badge by completing the Automate Data Capture at Scale with Document AI course. In this course, you learn how to extract, process, and capture data using Document AI.
完成「運用 BigQuery ML 建立機器學習模型」技能徽章中階課程,即可證明您具備下列技能: 可使用 BigQuery ML 建立及評估機器學習模型,並根據資料進行預測。 「技能徽章」是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品和服務方面的精熟技能, 代表您已通過測驗,能在互動式實作環境中應用相關知識。完成 本課程及結業評量挑戰實驗室,即可取得技能徽章 並與他人分享。
While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.
This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.
This course takes a real-world approach to the ML Workflow through a case study. An ML team faces several ML business requirements and use cases. The team must understand the tools required for data management and governance and consider the best approach for data preprocessing. The team is presented with three options to build ML models for two use cases. The course explains why they would use AutoML, BigQuery ML, or custom training to achieve their objectives.
In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.
This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.
This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.
The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.
This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
This course introduces the new generative AI features for Google Cloud databases, including Alloy DB AI, and Duet AI for the Database Migration Service. You will discover how generative AI can be implemented at the orchestration layer and explore various orchestration scenarios. You will also find out how Google Cloud uses Duet AI with databases.
完成 Google Kubernetes Engine 成本效益最佳化 技能徽章中階課程, 即可證明您具備下列技能:建立及管理多租戶叢集、依據命名空間監控資源使用量、 設定自動調度叢集和 Pod 資源以提升效能、設定負載平衡以最佳化 資源分配,以及導入有效性和完備性探測,確保應用程式維持健康並符合成本效益。 「技能徽章」是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品和服務方面的精熟技能, 代表您已通過測驗,能在互動式實作環境中應用相關知識。完成 本課程及結業評量挑戰實驗室,即可取得技能徽章 並與親友分享。
完成 在 Google Cloud 為機器學習 API 準備資料 技能徽章入門課程,即可證明您具備下列技能: 使用 Dataprep by Trifacta 清理資料、在 Dataflow 執行資料管道、在 Dataproc 建立叢集和執行 Apache Spark 工作,以及呼叫機器學習 API,包含 Cloud Natural Language API、Google Cloud Speech-to-Text API 和 Video Intelligence API。
完成 建立 Google Cloud 網路 課程即可獲得技能徽章。這個課程將說明 部署及監控應用程式的多種方法,包括查看 IAM 角色及新增/移除 專案存取權、建立虛擬私有雲網路、部署及監控 Compute Engine VM、編寫 SQL 查詢、在 Compute Engine 部署及監控 VM,以及 使用 Kubernetes 透過多種方法部署應用程式。
完成「在 Google Cloud 使用 Terraform 建構基礎架構」技能徽章中階課程, 即可證明自己具備下列知識與技能:使用 Terraform 的基礎架構即程式碼 (IaC) 原則、運用 Terraform 設定佈建及管理 Google Cloud 資源、有效管理狀態 (本機和遠端),以及將 Terraform 程式碼模組化,以利重複使用和管理。
完成 在 Compute Engine 實作負載平衡功能 技能徽章入門課程,即可證明您具備下列技能: 編寫 gcloud 指令和使用 Cloud Shell、在 Compute Engine 建立及部署虛擬機器, 以及設定網路和 HTTP 負載平衡器。 「技能徽章」是 Google Cloud 核發的 獨家數位徽章,用於肯定您在 Google Cloud 產品與服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關 知識。完成這個課程及挑戰研究室 最終評量,即可取得技能徽章並與親友分享。
Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.
This course teaches participants techniques for monitoring and improving infrastructure and application performance in Google Cloud. Using a combination of presentations, demos, hands-on labs, and real-world case studies, attendees gain experience with full-stack monitoring, real-time log management and analysis, debugging code in production, tracing application performance bottlenecks, and profiling CPU and memory usage.
這堂課程可讓參加人員瞭解如何使用確實有效的設計模式,在 Google Cloud 中打造相當可靠且效率卓越的解決方案。這堂課程接續了「設定 Google Compute Engine 架構」或「設定 Google Kubernetes Engine 架構」課程的內容,並假設參加人員曾實際運用上述任一課程涵蓋的技術。這堂課程結合了簡報、設計活動和實作研究室,可讓參加人員瞭解如何定義業務和技術需求,並在兩者之間取得平衡,設計出相當可靠、可用性高、安全又符合成本效益的 Google Cloud 部署項目。
This course helps learners create a study plan for the PCA (Professional Cloud Architect) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
這個入門微學習課程主要介紹「負責任的 AI 技術」和其重要性,以及 Google 如何在自家產品中導入這項技術。本課程也會說明 Google 的 7 個 AI 開發原則。
這是一堂入門級的微學習課程,旨在探討大型語言模型 (LLM) 的定義和用途,並說明如何調整提示來提高 LLM 成效。此外,也會介紹多項 Google 工具,協助您自行開發生成式 AI 應用程式。
This course will help ML Engineers, Developers, and Data Scientists implement Large Language Models for Generative AI use cases with Vertex AI. The first two modules of this course contain links to videos and prerequisite course materials that will build your knowledge foundation in Generative AI. Please do not skip these modules. The advanced modules in this course assume you have completed these earlier modules.
(Previously named "Developing apps with Vertex AI Agent Builder: Search". Please note there maybe instances in this course where previous product names and titles are used) Enterprises of all sizes have trouble making their information readily accessible to employees and customers alike. Internal documentation is frequently scattered across wikis, file shares, and databases. Similarly, consumer-facing sites often offer a vast selection of products, services, and information, but customers are frustrated by ineffective site search and navigation capabilities. This course teaches you to use AI Applications to integrate enterprise-grade generative AI search.
This content is deprecated. Please see the latest version of the course, here.
隨著企業持續擴大使用人工智慧和機器學習,以負責任的方式發展相關技術也日益重要。對許多企業來說,談論負責任的 AI 技術可能不難,如何付諸實行才是真正的挑戰。如要瞭解如何在機構中導入負責任的 AI 技術,本課程絕對能助您一臂之力。 您可以從中瞭解 Google Cloud 目前採取的策略、最佳做法和經驗談,協助貴機構奠定良好基礎,實踐負責任的 AI 技術。
本課程會介紹 Vertex AI Studio。您可以運用這項工具和生成式 AI 模型互動、根據商業構想設計原型,並投入到正式環境。透過身歷其境的應用實例、有趣的課程及實作實驗室,您將能探索從提示到正式環境的生命週期,同時學習如何將 Vertex AI Studio 運用在多模態版 Gemini 應用程式、提示設計、提示工程和模型調整。這個課程的目標是讓您能運用 Vertex AI Studio,在專案中發揮生成式 AI 的潛能。
本課程說明如何使用深度學習來建立圖像說明生成模型。您將學習圖像說明生成模型的各個不同組成部分,例如編碼器和解碼器,以及如何訓練和評估模型。在本課程結束時,您將能建立自己的圖像說明生成模型,並使用模型產生圖像說明文字。
這堂課程將說明變換器架構,以及基於變換器的雙向編碼器表示技術 (BERT) 模型,同時帶您瞭解變換器架構的主要組成 (如自我注意力機制) 和如何用架構建立 BERT 模型。此外,也會介紹 BERT 適用的各種任務,像是文字分類、問題回答和自然語言推論。課程預計約 45 分鐘。
本課程概要說明解碼器與編碼器的架構,這種強大且常見的機器學習架構適用於序列對序列的任務,例如機器翻譯、文字摘要和回答問題。您將認識編碼器與解碼器架構的主要元件,並瞭解如何訓練及提供這些模型。在對應的研究室逐步操作說明中,您將學習如何從頭開始使用 TensorFlow 寫程式,導入簡單的編碼器與解碼器架構來產生詩詞。
本課程將介紹注意力機制,說明這項強大技術如何讓類神經網路專注於輸入序列的特定部分。此外,也將解釋注意力的運作方式,以及如何使用注意力來提高各種機器學習任務的成效,包括機器翻譯、文字摘要和回答問題。
本課程將介紹擴散模型,這是一種機器學習模型,近期在圖像生成領域展現亮眼潛力。概念源自物理學,尤其深受熱力學影響。過去幾年來,在學術界和業界都是炙手可熱的焦點。在 Google Cloud 中,擴散模型是許多先進圖像生成模型和工具的基礎。課程將介紹擴散模型背後的理論,並說明如何在 Vertex AI 上訓練和部署這些模型。
Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.
這個入門微學習課程主要說明生成式 AI 的定義和使用方式,以及此 AI 與傳統機器學習方法的差異。本課程也會介紹各項 Google 工具,協助您開發自己的生成式 AI 應用程式。
In this course, you will receive technical training for Enterprise Data Warehouses solutions using BigQuery based on the best practices developed internally by Google’s technical sales and services organizations. The course will also provide guidance and training on key technical challenges that can arise when migrating existing Enterprise Data Warehouses and ETL pipelines to Google Cloud. You will get hands-on experience with real migration tasks, such as data migration, schema optimization, and SQL Query conversion and optimization. The course will also cover key aspects of ETL pipeline migration to Dataproc as well as using Pub/Sub, Dataflow, and Cloud Data Fusion, giving you hands-on experience using all of these tools for Data Warehouse ETL pipelines.
This skill badge aims to evaluate a partners ability to utilize various methods available to them to migrate data from Teradata to BigQuery. Learners will perform the tasks of Migration from Teradata to BigQuery using the Data Transfer Service and the Teradata TPT Export Utility. Sample Data will be used during both methods. Learners will complete a challenge lab that focuses on the process of transferring both schema, data and SQL from a Teradata data warehouse to BigQuery.
This skill badge aims to provide partners an introduction to BigQuery Data Transfer Service and Migration Service, two powerful tools for managing and migrating data in the cloud. Learners will learn how to leverage these tools to efficiently migrate and manage data, and gain hands-on experience through labs.
This course continues to explore the implementation of data load and transformation pipelines for a BigQuery Data Warehouse using Dataflow.
This workload aims to upskill Google Cloud partners to perform specific tasks associated with priority workloads. Learners will perform the tasks of Migration from Teradata to BigQuery using the Data Transfer Service and the Teradata TPT Export Utility. Sample Data will be used during both methods. Learners will complete a challenge lab that focuses on the process of transferring both schema, data and SQL from a Teradata data warehouse to BigQuery.
In this course, you explore the four components that make up the BigQuery Migration Service. They are Migration Assessment, SQL Translation, Data Transfer Service, and Data Validation. You will use each of these tools to perform a migration using to BigQuery.
This skill badge aims to evaluate a partner's ability to utilize BigQuery's features and capabilities to manage and analyze large datasets. Learners will gain hands-on experience through labs and achieve solid understanding of BigQuery's foundational concepts and features.
只要修完「在 Google Cloud 設定應用程式開發環境」課程,就能獲得技能徽章。 在本課程中,您將學會如何使用以下技術的基本功能,建構和連結以儲存空間為中心的雲端基礎架構:Cloud Storage、Identity and Access Management、Cloud Functions 和 Pub/Sub。
歡迎參加「開始使用 Google Kubernetes Engine」課程。Kubernetes 是位於應用程式和硬體基礎架構之間的軟體層。如果您對這項技術感興趣,這堂課程可以滿足您的需求。有了 Google Kubernetes Engine,您就能在 Google Cloud 中以代管服務的形式使用 Kubernetes。 本課程的目標在於介紹 Google Kubernetes Engine (常簡稱為 GKE) 的基本概念,以及如何將應用程式容器化,以便在 Google Cloud 中執行。課程首先會初步介紹 Google Cloud,隨後簡介容器、Kubernetes、Kubernetes 架構和 Kubernetes 作業。
這堂隨選密集課程會向參加人員說明 Google Cloud 提供的全方位彈性基礎架構和平台服務。這堂課結合了視訊講座、示範和實作研究室,可讓參加人員探索及部署解決方案元素,包括安全地建立互連網路、負載平衡、自動調度資源、基礎架構自動化,以及代管服務。
這堂隨選密集課程會向參加人員說明 Google Cloud 提供的全方位彈性基礎架構和平台服務,並將重點放在 Compute Engine。這堂課程結合了視訊講座、示範和實作研究室,可讓參加人員探索及部署解決方案元素,例如網路、系統和應用程式服務等基礎架構元件。另外,這堂課也會介紹如何部署實用的解決方案,包括客戶提供的加密金鑰、安全性和存取權管理機制、配額與帳單,以及資源監控功能。
這堂隨選密集課程會向參加人員說明 Google Cloud 提供的全方位彈性基礎架構和平台服務,尤其側重於 Compute Engine。這堂課程結合了視訊講座、示範和實作研究室,可讓參加人員探索及部署解決方案元素,例如網路、虛擬機器和應用程式服務等基礎架構元件。您會瞭解如何透過控制台和 Cloud Shell 使用 Google Cloud。另外,您也能瞭解雲端架構師的職責、基礎架構設計方法,以及具備虛擬私有雲 (VPC)、專案、網路、子網路、IP 位址、路徑和防火牆規則的虛擬網路設定。
「Google Cloud 基礎知識:核心基礎架構」介紹了在使用 Google Cloud 時會遇到的重要概念和術語。本課程會透過影片和實作實驗室,介紹並比較 Google Cloud 的多種運算和儲存服務,同時提供重要的資源和政策管理工具。
This course helps you structure your preparation for the Associate Cloud Engineer exam. You will learn about the Google Cloud domains covered by the exam and how to create a study plan to improve your domain knowledge.