Folgueiras González Olaya
メンバー加入日: 2023
ダイヤモンド リーグ
23606 ポイント
メンバー加入日: 2023
BigQuery ML を使用した予測モデリング向けのデータ エンジニアリング」のスキルバッジを獲得できる中級コースを修了すると、 Dataprep by Trifacta を使用した BigQuery へのデータ変換パイプラインの構築、 Cloud Storage、Dataflow、BigQuery を使用した抽出、変換、読み込み(ETL)ワークフローの構築、 BigQuery ML を使用した ML モデルの構築に関するスキルを実証できます。
「BigQuery ML を使用した ML モデルの作成」コースの中級スキルバッジを獲得できるアクティビティを修了すると、 BigQuery ML を使用して ML モデルを作成および評価し、データを予測するスキルを証明できます。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキル バッジ コースと最終評価チャレンジラボを修了し、スキルバッジを獲得して ネットワークで共有しましょう。
「Google Cloud の ML API 用にデータを準備」コースの入門スキルバッジを獲得できるアクティビティを修了すると、 Dataprep by Trifacta を使用したデータのクリーニング、Dataflow でのデータ パイプラインの実行、Dataproc でのクラスタの作成と Apache Spark ジョブの実行、 Cloud Natural Language API、Google Cloud Speech-to-Text API、Video Intelligence API などの ML API の呼び出しに関するスキルを証明できます。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキルバッジ コースと最終評価チャレンジラボを修了し、 スキルバッジを獲得してネットワークで共有しましょう。
このコースは、Vertex AI Notebooks に関する入門コースです。Vertex AI Notebooks は Jupyter ノートブックをベースとした環境であり、データの準備からモデルのデプロイとモニタリングに至るまで ML のワークフロー全体をサポートする統合プラットフォームを提供します。このコースでは、(1)Vertex AI Notebooks の種類とそれぞれの機能、(2)Vertex AI Notebooks の作成と管理の方法について説明します。
このコースでは、予測 AI と生成 AI の両方のプロジェクトを構築できる、Google Cloud の AI および機械学習(ML)サービスについて紹介します。AI の基盤、開発、ソリューションを含むデータから AI へのライフサイクル全体で利用可能なテクノロジー、プロダクト、ツールについて説明するとともに、魅力的な学習体験と実践的なハンズオン演習を通じて、データ サイエンティスト、AI 開発者、ML エンジニアの方々がスキルや知識を強化できるようサポートすることを目指しています。
このコースでは、Vertex AI Feature Store を使用するメリット、ML モデルの精度を向上させる方法、最も有効な特徴を抽出できるデータ列の見極め方について説明します。また、BigQuery ML、Keras、TensorFlow を使用した特徴量エンジニアリングに関するコンテンツとラボも用意されています。
このコースでは、TensorFlow と Keras を使用した ML モデルの構築、ML モデルの精度の向上、スケーリングに対応した ML モデルの作成について取り上げます。
このコースでは、ML ワークフローに対する実践的なアプローチを取り上げます。具体的には、いくつかの ML のビジネス要件とユースケースに取り組む ML チームをケーススタディ形式で紹介します。このチームは、データ マネジメントとガバナンスに必要なツールを理解し、データの前処理に最適なアプローチを検討する必要があります。 2 つのユースケースに対して ML モデルを構築するための 3 つのオプションがチームに提示されます。このコースでは、チームの目標を達成するために、AutoML、BigQuery ML、カスタム トレーニングを使用する理由について説明します。
このコースでは、ML について定義し、ビジネスで ML をどのように活用できるのかを学習します。機械学習を使用したデモをいくつか確認し、機械学習の主な用語(インスタンス、特徴、ラベルなど)について学習します。インタラクティブなラボでは、事前トレーニング済みの ML API の呼び出しを実行するほか、BigQuery ML で SQL のみを使用して独自の ML モデルを構築します。
このコースシリーズの 3 番目のコースは、「Achieving Advanced Insights with BigQuery」です。ここでは、高度な関数と、複雑なクエリを管理可能なステップに分割する方法を学びながら、SQL に関する知識を深めます。 BigQuery の内部アーキテクチャ(列ベースのシャーディング ストレージ)についてや、ARRAY と STRUCT を使用した、ネストされたフィールドと繰り返しフィールドなどの高度な SQL トピックについて説明します。最後に、クエリのパフォーマンスを最適化する方法と、承認済みビューを使用してデータを保護する方法について説明します。 このコースを修了したら、「Applying Machine Learning to Your Data with Google」コースに登録してください。
これは「Data to Insights」コースシリーズの 2 つ目のコースです。ここでは、新しい外部データセットを BigQuery に取り込み、Looker Studio で可視化する方法について説明します。また、複数テーブルの JOIN と UNION など、中級者向けの SQL のコンセプトについても説明します。JOIN や UNION を使用すると、複数のデータソースのデータを分析できます。 注: すでに SQL に関する知識をお持ちの方も、BigQuery に固有の要素(クエリ キャッシュやテーブル ワイルドカードの処理など)について学ぶことができます。 このコースを修了したら、「Achieving Advanced Insights with BigQuery」コースに登録してください。
このコースでは、データ アナリストが共通して直面する課題と、その課題を Google Cloud のビッグデータ ツールを使用して解決する方法を取り上げます。その過程で SQL を学習しながら、BigQuery と Dataprep を使用してデータセットを分析し、変換する方法について理解を深めます。 これは「From Data to Insights with Google Cloud」シリーズの最初のコースです。このコースを修了したら、「Creating New BigQuery Datasets and Visualizing Insights」コースを受講してください。
Google Cloud の基礎: コア インストラクチャ では、Google Cloud に関する重要なコンセプトと用語について説明します。このコースでは動画とハンズオンラボを通じて学習を進めていきます。Google Cloud の多数のコンピューティング サービスとストレージ サービス、そしてリソースとポリシーを管理するための重要なツールについて比較しながら説明します。