Dołącz Zaloguj się

Jagadeesh Thallam

Jest członkiem od 2018

Liga srebrna

9460 pkt.
Serverless Data Processing with Dataflow: Operations Earned gru 14, 2024 EST
Serverless Data Processing with Dataflow: Foundations Earned gru 14, 2024 EST
Building Resilient Streaming Analytics Systems on Google Cloud Earned gru 3, 2024 EST
Preparing for your Professional Data Engineer Journey Earned sie 3, 2024 EDT
Building Batch Data Pipelines on Google Cloud Earned wrz 20, 2023 EDT
Modernizing Data Lakes and Data Warehouses with Google Cloud Earned wrz 7, 2023 EDT
Generative AI Explorer : Vertex AI Earned sie 30, 2023 EDT
Responsible AI: Applying AI Principles with Google Cloud - Polski Earned sie 27, 2023 EDT
Introduction to Image Generation Earned sie 27, 2023 EDT
Generative AI Fundamentals Earned sie 10, 2023 EDT
Introduction to Responsible AI - Polski Earned sie 10, 2023 EDT
Introduction to Large Language Models - Polski Earned sie 9, 2023 EDT
Introduction to Generative AI - Polski Earned sie 9, 2023 EDT

In the last installment of the Dataflow course series, we will introduce the components of the Dataflow operational model. We will examine tools and techniques for troubleshooting and optimizing pipeline performance. We will then review testing, deployment, and reliability best practices for Dataflow pipelines. We will conclude with a review of Templates, which makes it easy to scale Dataflow pipelines to organizations with hundreds of users. These lessons will help ensure that your data platform is stable and resilient to unanticipated circumstances.

Więcej informacji

This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.

Więcej informacji

Processing streaming data is becoming increasingly popular as streaming enables businesses to get real-time metrics on business operations. This course covers how to build streaming data pipelines on Google Cloud. Pub/Sub is described for handling incoming streaming data. The course also covers how to apply aggregations and transformations to streaming data using Dataflow, and how to store processed records to BigQuery or Bigtable for analysis. Learners get hands-on experience building streaming data pipeline components on Google Cloud by using QwikLabs.

Więcej informacji

This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

Więcej informacji

Data pipelines typically fall under one of the Extract and Load (EL), Extract, Load and Transform (ELT) or Extract, Transform and Load (ETL) paradigms. This course describes which paradigm should be used and when for batch data. Furthermore, this course covers several technologies on Google Cloud for data transformation including BigQuery, executing Spark on Dataproc, pipeline graphs in Cloud Data Fusion and serverless data processing with Dataflow. Learners get hands-on experience building data pipeline components on Google Cloud using Qwiklabs.

Więcej informacji

The two key components of any data pipeline are data lakes and warehouses. This course highlights use-cases for each type of storage and dives into the available data lake and warehouse solutions on Google Cloud in technical detail. Also, this course describes the role of a data engineer, the benefits of a successful data pipeline to business operations, and examines why data engineering should be done in a cloud environment. This is the first course of the Data Engineering on Google Cloud series. After completing this course, enroll in the Building Batch Data Pipelines on Google Cloud course.

Więcej informacji

This content is deprecated. Please see the latest version of the course, here.

Więcej informacji

Im szerzej wykorzystuje się w firmach sztuczną inteligencję i systemy uczące się, tym większej wagi nabiera odpowiedzialne podejście do opracowywania tych technologii. Wielu organizacjom trudniej jest jednak wprowadzić zasady odpowiedzialnej AI w praktyce niż tylko o tym rozmawiać. To szkolenie jest przeznaczone dla osób, które chcą się dowiedzieć, jak wdrożyć odpowiedzialną AI w swojej organizacji. W jego trakcie dowiesz się, jak robimy to w Google Cloud, oraz poznasz sprawdzone metody i wnioski z naszych działań w tym zakresie. Pomoże Ci to opracować własne podejście do odpowiedzialnej AI.

Więcej informacji

This course introduces diffusion models, a family of machine learning models that recently showed promise in the image generation space. Diffusion models draw inspiration from physics, specifically thermodynamics. Within the last few years, diffusion models became popular in both research and industry. Diffusion models underpin many state-of-the-art image generation models and tools on Google Cloud. This course introduces you to the theory behind diffusion models and how to train and deploy them on Vertex AI.

Więcej informacji

Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.

Więcej informacji

Celem tego szybkiego szkolenia dla początkujących jest wyjaśnienie, czym jest odpowiedzialna AI i dlaczego jest ważna, oraz przedstawienie, jak Google wprowadza ją w swoich usługach. Szkolenie zawiera także wprowadzenie do siedmiu zasad Google dotyczących sztucznej inteligencji.

Więcej informacji

To szybkie szkolenie dla początkujących wyjaśnia, czym są duże modele językowe (LLM) oraz jakie są ich zastosowania. Przedstawia również możliwości zwiększenia ich wydajności przez dostrajanie przy użyciu promptów oraz narzędzia Google, które pomogą Ci tworzyć własne aplikacje korzystające z generatywnej AI.

Więcej informacji

Celem tego szybkiego szkolenia dla początkujących jest wyjaśnienie, czym jest generatywna AI oraz jakie są jej zastosowania. Szkolenie przedstawia również różnice pomiędzy tą technologią a tradycyjnymi systemami uczącymi się, a także narzędzia Google, które pomogą Ci tworzyć własne aplikacje korzystające z generatywnej AI.

Więcej informacji