参加 ログイン

Reasons Stuart

メンバー加入日: 2022

ブロンズリーグ

800 ポイント
Dataflow を使用したサーバーレスのデータ処理: 基礎 Earned 1月 16, 2023 EST
Smart Analytics, Machine Learning, and AI on Google Cloud - 日本語版 Earned 1月 16, 2023 EST
Google Cloud における復元力のあるストリーミング分析システムの構築 Earned 1月 12, 2023 EST
Google Cloud でのバッチデータ パイプラインの構築 Earned 1月 12, 2023 EST
Google Cloud を使用したデータレイクとデータ ウェアハウスのモダナイゼーション Earned 1月 10, 2023 EST
Google Cloud Big Data and Machine Learning Fundamentals - 日本語版 Earned 1月 9, 2023 EST
Google Cloud Operations を使用したスケーリング Earned 11月 16, 2022 EST
Google Cloud によるインフラストラクチャとアプリケーションのモダナイゼーション Earned 11月 15, 2022 EST
Google Cloud によるデータ トランスフォーメーションの探求 Earned 11月 14, 2022 EST
Google Cloud によるデジタル トランスフォーメーション Earned 11月 14, 2022 EST
Cloud Healthcare API Earned 11月 2, 2022 EDT

このコースは、Dataflow を使用したサーバーレスのデータ処理に関する 3 コースシリーズのパート 1 です。この最初のコースでは、始めに Apache Beam とは何か、そして Dataflow とどのように関係しているかを復習します。次に、Apache Beam のビジョンと Beam Portability フレームワークの利点について説明します。Beam Portability フレームワークによって、デベロッパーが好みのプログラミング言語と実行バックエンドを使用できるビジョンが実現します。続いて、Dataflow によってどのように費用を節約しながらコンピューティングとストレージを分離できるか、そして識別ツール、アクセスツール、管理ツールがどのように Dataflow パイプラインと相互に機能するかを紹介します。最後に、Dataflow でそれぞれのユースケースに合った適切なセキュリティ モデルを実装する方法について学習します。

詳細

ML をデータ パイプラインに組み込むと、データから分析情報を抽出する能力を向上できます。このコースでは、Google Cloud でデータ パイプラインに ML を含める複数の方法について説明します。カスタマイズがほとんど、またはまったく必要ない場合のために、このコースでは AutoML について説明します。よりカスタマイズされた ML 機能については、Notebooks と BigQuery の機械学習(BigQuery ML)を紹介します。また、Vertex AI を使用して ML ソリューションを本番環境に導入する方法も説明します。

詳細

ストリーミングによって企業が事業運営に関するリアルタイムの指標を取得できるようになり、ストリーミング データの処理を行う機会が増えてきました。このコースでは、Google Cloud でストリーミング データ パイプラインを構築する方法について学習します。受信ストリーミング データの処理のために Pub/Sub について説明します。また、このコースでは、Dataflow を使用してストリーミング データの集計や変換を行う方法、処理済みのレコードを分析用に BigQuery や Bigtable に保存する方法についても説明します。さらに、Qwiklabs を使用して Google Cloud でストリーミング データ パイプラインのコンポーネントを構築する実践演習を行います。

詳細

通常、データ パイプラインは、「抽出、読み込み(EL)」、「抽出、読み込み、変換(ELT)」、「抽出、変換、読み込み(ETL)」のいずれかの考え方に分類できます。このコースでは、バッチデータではどの枠組みを、どのような場合に使用するのかについて説明します。本コースではさらに、BigQuery、Dataproc 上での Spark の実行、Cloud Data Fusion のパイプラインのグラフ、Dataflow でのサーバーレスのデータ処理など、データ変換用の複数の Google Cloud テクノロジーについて説明します。また、Qwiklabs を使用して Google Cloud でデータ パイプラインのコンポーネントを構築する実践演習を行います。

詳細

すべてのデータ パイプラインには、データレイクとデータ ウェアハウスという 2 つの主要コンポーネントがあります。このコースでは、各ストレージ タイプのユースケースを紹介し、Google Cloud で利用可能なデータレイクとデータ ウェアハウスのソリューションを技術的に詳しく説明します。また、データ エンジニアの役割や、効果的なデータ パイプラインが事業運営にもたらすメリットについて確認し、クラウド環境でデータ エンジニアリングを行うべき理由を説明します。 これは「Data Engineering on Google Cloud」シリーズの最初のコースです。このコースを修了したら、「Google Cloud でのバッチデータ パイプラインの構築」コースに登録してください。

詳細

このコースでは、データから AI へのライフサイクルをサポートする Google Cloud のビッグデータと ML のプロダクトやサービスを紹介します。また、Google Cloud で Vertex AI を使用してビッグデータ パイプラインと ML モデルを作成する際のプロセス、課題、メリットについて説明します。

詳細

あらゆる規模の組織が、事業運営の変革にクラウドの能力と柔軟性を活用しているなかで、クラウド リソースを効果的に管理、スケーリングすることが複雑なタスクになる可能性もあります。 ここでは、Google Cloud Operations を使用したスケーリングを通して、クラウドにおける最新の運用、信頼性、レジリエンスに関する基本的概念と、Google Cloud がこういった取り組みをどのように支援できるのかについて理解を深めます。 このコースは クラウド デジタル リーダー 学習プログラムの一部で、個人が自分の役割において成長し、ビジネスの未来を構築することを目的としています。

詳細

多くの従来型企業では、既存のシステムやアプリケーションで昨今の顧客の期待に応え続けることが難しくなっています。この場合、経営者は、老朽化した IT システムの保守を続けるのか、新たな製品やサービスに投資をするのか、選択を迫られることになります。「Google Cloud によるインフラストラクチャとアプリケーションのモダナイゼーション」ではそうした課題を明らかにするとともに、そうした課題をクラウド テクノロジーによって乗り越えるためのソリューションについて学びます。 このコースは クラウド デジタル リーダー 学習プログラムの一部で、個人が自分の役割において成長し、ビジネスの未来を構築することを目的としています。

詳細

クラウド テクノロジーは組織に大きな価値をもたらします。クラウド テクノロジーの力をデータと組み合わせることで、その価値はさらに大きなものとなり、新しいカスタマー エクスペリエンスを提供できる可能性があります。「Google Cloud によるデータ トランスフォーメーションの探求」では、データが組織にもたらす価値と、Google Cloud でデータを有用かつアクセス可能なものにする方法を学習します。このコースは「クラウド デジタル リーダー」学習プログラムの一部で、個人が自分の役割において成長し、ビジネスの未来を構築することを目的としています。

詳細

クラウド テクノロジーとデジタル トランスフォーメーションに大きな期待が寄せられていますが、疑問点も多く残っています。 例: クラウド テクノロジーとは何か?デジタル トランスフォーメーションとは何を意味しているか?クラウド テクノロジーが組織にどう役立つのか?どこから着手するのか? このような疑問をお持ちなら、このコースはぴったりです。このコースでは、デジタル トランスフォーメーションにおいて多くの企業が直面する機会と課題のタイプについてご説明します。このデジタル トランスフォーメーションの入門コースなら、クラウド テクノロジーに関する知識を深めて自分の業務に活用するとともに、今後のビジネスの成長にも役立てていただけます。このコースは クラウド デジタル リーダー 学習プログラムの一部です。

詳細

Cloud Healthcare API bridges the gap between care systems and applications built on Google Cloud. By supporting standards-based data formats and protocols of existing healthcare technologies, Cloud Healthcare API connects your data to advanced Google Cloud capabilities, including streaming data processing with Cloud Dataflow, scalable analytics with BigQuery, and machine learning with Cloud Machine Learning Engine. In this Quest you will use the Cloud Healthcare API to ingest and process data in the industry standard FHIR, HL7v2 and DICOM formats, train a TensorFlow model for prediction with FHIR data, and also gain practice with de-identification of datasets.

詳細