Join Sign in

Priyanshu Mishra

Member since 2023

Diamond League

22430 points
Machine Learning Operations (MLOps): Getting Started Earned Şub 3, 2025 EST
Natural Language Processing on Google Cloud Earned Ara 15, 2024 EST
Preparing for your Professional Data Engineer Journey Earned Kas 7, 2024 EST
Production Machine Learning Systems Earned Kas 6, 2024 EST
Kodlayıcı-Kod Çözücü Mimarisi Earned Eki 22, 2024 EDT
Machine Learning in the Enterprise Earned Eki 20, 2024 EDT
Dikkat Mekanizması Earned Eyl 24, 2024 EDT
Feature Engineering Earned Haz 25, 2024 EDT
Build, Train and Deploy ML Models with Keras on Google Cloud Earned Mar 29, 2024 EDT
Launching into Machine Learning Earned Mar 17, 2024 EDT
Introduction to AI and Machine Learning on Google Cloud Earned Mar 11, 2024 EDT

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

Learn more

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

Learn more

This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

Learn more

This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.

Learn more

Bu kursta, kodlayıcı-kod çözücü mimarisi özet olarak anlatılmaktadır. Bu mimari; makine çevirisi, metin özetleme ve soru yanıtlama gibi "sıradan sıraya" görevlerde yaygın olarak kullanılan, güçlü bir makine öğrenimi mimarisidir. Kursta, kodlayıcı-kod çözücü mimarisinin ana bileşenlerini ve bu modellerin nasıl eğitilip sunulacağını öğreneceksiniz. Laboratuvarın adım adım açıklamalı kılavuz bölümünde ise sıfırdan şiir üretmek için TensorFlow'da kodlayıcı-kod çözücü mimarisinin basit bir uygulamasını yazacaksınız.

Learn more

This course takes a real-world approach to the ML Workflow through a case study. An ML team faces several ML business requirements and use cases. The team must understand the tools required for data management and governance and consider the best approach for data preprocessing. The team is presented with three options to build ML models for two use cases. The course explains why they would use AutoML, BigQuery ML, or custom training to achieve their objectives.

Learn more

Bu kursta nöral ağların, giriş sırasının belirli bölümlerine odaklanmasına olanak tanıyan güçlü bir teknik olan dikkat mekanizması tanıtılmaktadır. Kursta, dikkat mekanizmasının çalışma şeklini ve makine öğrenimi, metin özetleme ve soru yanıtlama gibi çeşitli makine öğrenimi görevlerinin performansını artırmak için nasıl kullanılabileceğini öğreneceksiniz.

Learn more

This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.

Learn more

This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.

Learn more

The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.

Learn more

This course introduces the AI and machine learning (ML) offerings on Google Cloud that build both predictive and generative AI projects. It explores the technologies, products, and tools available throughout the data-to-AI life cycle, encompassing AI foundations, development, and solutions. It aims to help data scientists, AI developers, and ML engineers enhance their skills and knowledge through engaging learning experiences and practical hands-on exercises.

Learn more