KarthikRajesh P R
成为会员时间:2022
青铜联赛
75225 积分
成为会员时间:2022
「生成式 AI 代理:實現組織轉型」是 Generative AI Leader 學習路徑的第五門課,也是最後一門。本課程將探討組織如何運用自訂生成式 AI 代理,解決特定的業務難題。您將動手練習建構基本的生成式 AI 代理,同時熟悉這類代理的各種元件,例如模型、推論迴圈和工具。
「生成式 AI 應用程式:徹底改變工作方式」是 Generative AI Leader 學習路徑的第四門課程。本課程將介紹 Google 的生成式 AI 應用程式,例如 Gemini for Workspace 和NotebookLM,也會引導您瞭解各種概念,像是建立基準、檢索增強生成、建構有效的提示詞,以及打造自動化工作流程等。
「生成式 AI:掌握幕後技術與環境」是 Generative AI Leader 學習路徑的第三門課程。生成式 AI 正在改變我們的工作方式,以及我們如何與周遭的世界互動。身為領導者,您要如何駕馭 AI 強大的功能,創造實際業務成果?在本課程中,您將認識建構生成式 AI 解決方案時的各個層面、Google Cloud 產品,以及選擇解決方案時應考量的因素。
「生成式 AI: 瞭解基礎概念」是 Generative AI Leader 學習路徑的第二門課程。在本課程中,您將瞭解 AI、機器學習和生成式 AI 的差異,以及各種資料類型如何協助生成式 AI 解決業務難題,進而掌握生成式 AI 的基礎概念。您還能深入瞭解 Google Cloud 應對基礎 模型限制的策略,以及開發、部署安全且負責任的 AI 技術時面臨的主要挑戰。
「生成式 AI:不只是聊天機器人」是 Generative AI Leader 學習路徑的第一門課程,沒有任何修課條件。本課程將帶您超越基本知識,進一步瞭解聊天機器人,探索如何在組織中充分發揮生成式 AI 的潛力。您將瞭解基礎模型和提示工程等概念,掌握善用生成式AI 的關鍵。本課程也會帶您瞭解擬定生成式 AI 策略時的多種重要考量,協助您為組織擬定出成功的策略。
Initial deployment of Vertex AI Search and Google Agentspace apps takes only a few clicks, but getting the configurations right can elevate a deployment from a basic off-the-shelf app to an excellent custom search or recommendations experience. In this course, you'll learn more about the many ways you can customize and improve search, recommendations, and Google Agentspace apps.
Data stores represent a simple way to make content available to many types of generative AI applications, including search applications, recommendations engines, Google Agentspace apps, Agent Development Kit agents, and apps built with Google Gen AI or LangChain SDKs. Connect data from many sources include Cloud Storage, Google Drive, chat apps, mail apps, ticketing systems, third-party file storage providers, Salesforce, and many more.
As organizations move their data and applications to the cloud, they must address new security challenges. The Trust and Security with Google Cloud course explores the basics of cloud security, the value of Google Cloud's multilayered approach to infrastructure security, and how Google earns and maintains customer trust in the cloud. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Artificial intelligence (AI) and machine learning (ML) represent an important evolution in information technologies that are quickly transforming a wide range of industries. “Innovating with Google Cloud Artificial Intelligence” explores how organizations can use AI and ML to transform their business processes. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
本課程概要說明解碼器與編碼器的架構,這種強大且常見的機器學習架構適用於序列對序列的任務,例如機器翻譯、文字摘要和回答問題。您將認識編碼器與解碼器架構的主要元件,並瞭解如何訓練及提供這些模型。在對應的研究室逐步操作說明中,您將學習如何從頭開始使用 TensorFlow 寫程式,導入簡單的編碼器與解碼器架構來產生詩詞。
This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners will get hands-on practice using Vertex AI Feature Store's streaming ingestion at the SDK layer.
This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.
In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.
This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.
This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.
完成 透過 Vertex AI 建構及部署機器學習解決方案 課程,即可瞭解如何使用 Google Cloud 的 Vertex AI 平台、AutoML 和自訂訓練服務, 訓練、評估、調整、解釋及部署機器學習模型。 這個技能徽章課程適合專業數據資料學家和機器學習 工程師,完成即可取得中階技能徽章。技能 徽章是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品和服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境應用相關知識。完成這個技能徽章課程 和結業評量挑戰實驗室,就能獲得數位徽章, 並與親友分享。
This skill badge aims to evaluate a partner's ability to utilize various methods available to them to automate manual processes involved when deploying machine learning models using Vertex AI. Manual processes are often not scalable which is why advancing an organization's AI/ML adoption requires ML Ops processes to improve the rate of model training, experimentation and deployment.
This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.
In this second installment of the Dataflow course series, we are going to be diving deeper on developing pipelines using the Beam SDK. We start with a review of Apache Beam concepts. Next, we discuss processing streaming data using windows, watermarks and triggers. We then cover options for sources and sinks in your pipelines, schemas to express your structured data, and how to do stateful transformations using State and Timer APIs. We move onto reviewing best practices that help maximize your pipeline performance. Towards the end of the course, we introduce SQL and Dataframes to represent your business logic in Beam and how to iteratively develop pipelines using Beam notebooks.
This course takes a real-world approach to the ML Workflow through a case study. An ML team faces several ML business requirements and use cases. The team must understand the tools required for data management and governance and consider the best approach for data preprocessing. The team is presented with three options to build ML models for two use cases. The course explains why they would use AutoML, BigQuery ML, or custom training to achieve their objectives.
This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.
完成 運用 Cloud Run 開發無伺服器應用程式 技能徽章中階課程, 即可證明您具備下列技能:整合 Cloud Run 和 Cloud Storage 以管理資料、 使用 Cloud Run 和 Pub/Sub 架構可復原的非同步系統、 使用 Cloud Run 建構 REST API 閘道,以及在 Cloud Run 建構及部署服務。
完成「開始使用 Dataplex」技能徽章入門課程, 即可證明您具備下列技能:建立 Dataplex 資產、建立切面類型、 並將切面套用至 Dataplex 中的項目。
完成 在 Google Cloud 為機器學習 API 準備資料 技能徽章入門課程,即可證明您具備下列技能: 使用 Dataprep by Trifacta 清理資料、在 Dataflow 執行資料管道、在 Dataproc 建立叢集和執行 Apache Spark 工作,以及呼叫機器學習 API,包含 Cloud Natural Language API、Google Cloud Speech-to-Text API 和 Video Intelligence API。 「技能徽章」是 Google Cloud 核發的獨家數位徽章,用於肯定您在 Google Cloud 產品與服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關知識。完成本技能徽章課程及結業評量挑戰研究室, 即可取得技能徽章並與他人分享。
完成「開始使用 API Gateway」課程,即可獲得技能徽章。 本課程將說明如何使用 API Gateway,透過全代管閘道部署、保護及管理 API。
Earn a skill badge by completing the App Engine`:` 3 ways course, where you learn how to use App Engine with Python, Go, and PHP.
Earn a skill badge by completing the Analyze Speech and Language with Google APIs quest, where you learn how to use the Natural Language and Speech APIs in real-world settings.
完成「Cloud Speech API:3 種應用」課程,瞭解如何使用語音相關 API 工具合成及轉錄語音, 即可獲得入門級技能徽章。
The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.
完成「為 Looker 資訊主頁和報表準備資料」技能徽章入門課程, 即可證明您具備下列技能:可篩選、排序和 pivot 資料、合併不同的 Looker 探索結果, 還能使用函式和運算子建構 Looker 資訊主頁和報表,取得資料分析結果和圖表。
In this course, you'll use text embeddings for tasks like classification, outlier detection, text clustering and semantic search. You'll combine semantic search with the text generation capabilities of an LLM to build Retrieval Augmented Generation (RAG) solutions, such as for question-answering systems, using Google Cloud's Vertex AI and Google Cloud databases.
This course on Integrate Vertex AI Search and Conversation into Voice and Chat Apps is composed of a set of labs to give you a hands on experience to interacting with new Generative AI technologies. You will learn how to create end-to-end search and conversational experiences by following examples. These technologies complement predefined intent-based chat experiences created in Dialogflow with LLM-based, generative answers that can be based on your own data. Also, they allow you to porvide enterprise-grade search experiences for internal and external websites to search documents, structure data and public websites.
This course provides hands-on experience with Google Cloud's Search for Retail, focusing on practical skills in setting up and managing retail search functionalities using APIs and console configurations. Participants will engage with real-world scenarios to learn how to import product data, manage user events, configure search parameters, and optimize search results within a retail environment.
Earn the advanced skill badge by completing the Use Machine Learning APIs on Google Cloud course, where you learn the basic features for the following machine learning and AI technologies: Cloud Vision API, Cloud Translation API, and Cloud Natural Language API.
Earn a Introductory skill badge by completing the Cloud Run functions: 3 Ways course, where you learn how to use Cloud Run functions through the Google Cloud console and on the command line.
Earn an introductory skill badge by completing the Get Started with Google Workspace Tools course, where you will get introduced to Google's collaborative platform and learn to use Gmail, Calendar, Meet, Drive, Sheets, and AppSheet.
Earn a skill badge by completing the App Building with AppSheet course, where you learn how to build, configure, and publish apps using AppSheet.
本課程將介紹注意力機制,說明這項強大技術如何讓類神經網路專注於輸入序列的特定部分。此外,也將解釋注意力的運作方式,以及如何使用注意力來提高各種機器學習任務的成效,包括機器翻譯、文字摘要和回答問題。
Earn a skill badge by completing the Get Started with Cloud Storage skill badge course, where you learn how to create a Cloud Storage bucket, how to use the Cloud Storage command line, and how to use Bucket Lock to protect objects in a bucket.
完成「開始使用 Pub/Sub」任務,即可獲得 技能徽章。 您將瞭解如何透過 Cloud 控制台使用 Pub/Sub,以及如何使用 Cloud Scheduler 工作節省心力,而 Pub/Sub Lite 則能為大量事件擷取作業。節省費用。 「技能徽章」是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品和服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關 知識。完成這個技能徽章課程和結業評量挑戰實驗室之後, 即可取得技能徽章並與他人分享。
This skill badge course aims to unlock the power of data visualization and business intelligence reporting with Looker, and gain hands-on experience through labs.
Earn a skill badge by completing the Get Started with Looker skill badge course, where you learn how to analyze, visualize, and curate data using Looker Studio and Looker.
Earn a skill badge by completing the Analyze Sentiment with Natural Language API quest, where you learn how the API derives sentiment from text.
Earn a skill badge by completing the Analyze Images with the Cloud Vision API quest, where you discover how to leverage the Cloud Vision API for various tasks, including extracting text from images.
Learn how Gemini can revolutionize your ability to develop applications! This course helps developers go beyond the basics and learn how to integrate Gemini into their workflows.
This course explores Google Cloud technologies to create and generate embeddings. Embeddings are numerical representations of text, images, video and audio, and play a pivotal role in many tasks that involve the identification of similar items, like Google searches, online shopping recommendations, and personalized music suggestions. Specifically, you’ll use embeddings for tasks like classification, outlier detection, clustering and semantic search. You’ll combine semantic search with the text generation capabilities of an LLM to build Retrieval Augmented Generation (RAG) systems and question-answering solutions, on your own proprietary data using Google Cloud’s Vertex AI.
完成「Gemini 和 Imagen 實務應用:建構 AI 應用程式」技能徽章入門課程,即可證明您具備下列技能:圖片辨識、自然語言處理、 使用 Google 強大的 Gemini 和 Imagen 模型生成圖片,以及在 Vertex AI 平台上部署應用程式。
完成 使用 Gemini 和 Streamlit 開發生成式 AI 應用程式 技能徽章中階課程,即可證明您具備下列技能: 生成文字、透過 Python SDK 和 Gemini API 呼叫函式,以及運用 Cloud Run 部署 Streamlit 應用程式。 您將瞭解如何以不同方式透過提示請 Gemini 生成文字、使用 Cloud Shell 測試及疊代 Streamlit 應用程式,隨後封裝成 Docker 容器並在 Cloud Run 中部署。
完成 使用 Gemini 多模態功能和多模態 RAG 檢查複合型文件 技能徽章中階課程,即可證明您具備下列技能: 透過 Gemini 多模態功能,使用多模態提示從文字和影像資料擷取資訊、生成影片說明,以及擷取影片以外的額外資訊; 透過 Gemini 的多模態檢索增強生成 (RAG) 功能,為含有文字和圖片的文件建構中繼資料、取得所有相關文字分塊,以及顯示引用資料。 「技能徽章」是 Google Cloud 核發的獨家數位徽章,用於肯定您在 Google Cloud 產品和服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關知識。完成本課程及結業評量挑戰研究室,即可取得技能徽章,並與親友分享。
這堂課程會介紹 AI 搜尋技術、工具和應用程式。主題涵蓋使用向量嵌入執行語意搜尋;結合語意和關鍵字做法的混合型搜尋機制;以及運用檢索增強生成 (RAG) 技術建構有基準的 AI 代理,盡可能減少 AI 幻覺。您可以實際使用 Vertex AI Vector Search,打造智慧型搜尋引擎。
(This course was previously named Multimodal Prompt Engineering with Gemini and PaLM) This course teaches how to use Vertex AI Studio, a Google Cloud console tool for rapidly prototyping and testing generative AI models. You learn to test sample prompts, design your own prompts, and customize foundation models to handle tasks that meet your application's needs. Whether you are looking for text, chat, code, image or speech generative experiences Vertex AI Studio offers you an interface to work with and APIs to integrate your production application.
完成「在 Vertex AI 使用 Gemini API 探索生成式 AI」技能徽章中階課程,即可證明自己具備下列技能: 可運用 Gemini API 生成文字、分析圖片和影片來強化內容創作能力,還能使用函式呼叫技巧。 本課程將帶您瞭解如何善用進階的 Gemini 技術、使用多模態內容生成功能,並提升 AI 專案的潛力。
本課程會說明 Gemini in BigQuery,這是一套由 AI 輔助的功能,可協助「從資料到 AI」的工作流程。這些功能包含資料探索和準備、程式碼生成和疑難排解,以及工作流程探索和視覺化。本課程將透過概念解說、應用實例和實作實驗室,協助資料從業人員提升工作效率,並加速開發 pipeline。
本課程介紹 Google Cloud 中的 AI 和機器學習 (ML) 服務。這些服務可建構預測式和生成式 AI 專案。我們將帶您探索「從資料到 AI」生命週期中適用的技術、產品和工具,包括 AI 基礎、開發選項及解決方案。課程目的是藉由生動的學習體驗與實作練習,增進數據資料學家、AI 開發人員和機器學習工程師的技能與知識。
Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.
完成 在 Vertex AI 設計提示 技能徽章入門課程,即可證明您具備下列技能: 在 Vertex AI 設計提示、分析圖片,以及運用多模態模型生成內容。瞭解如何建立有效的提示、引導生成式 AI 輸出內容, 以及將 Gemini 模型用於實際的行銷情境。 「技能徽章」是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品與服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關知識。完成 本課程及結業評量挑戰研究室,即可取得技能徽章 並與親友分享。
本課程會介紹 Vertex AI Studio。您可以運用這項工具和生成式 AI 模型互動、根據商業構想設計原型,並投入到正式環境。透過身歷其境的應用實例、有趣的課程及實作實驗室,您將能探索從提示到正式環境的生命週期,同時學習如何將 Vertex AI Studio 運用在多模態版 Gemini 應用程式、提示設計、提示工程和模型調整。這個課程的目標是讓您能運用 Vertex AI Studio,在專案中發揮生成式 AI 的潛能。
Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.
本課程旨在提供必要的知識和工具,協助您探索機器學習運作團隊在部署及管理生成式 AI 模型時面臨的獨特挑戰,並瞭解 Vertex AI 如何幫 AI 團隊簡化機器學習運作程序,打造成效非凡的生成式 AI 專案。
A Business Leader in Generative AI can articulate the capabilities of core cloud Generative AI products and services and understand how they benefit organizations. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey and how they can leverage Google Cloud's generative AI products to overcome these challenges.
隨著企業持續擴大使用人工智慧和機器學習,以負責任的方式發展相關技術也日益重要。對許多企業來說,談論負責任的 AI 技術可能不難,如何付諸實行才是真正的挑戰。如要瞭解如何在機構中導入負責任的 AI 技術,本課程絕對能助您一臂之力。 您可以從中瞭解 Google Cloud 目前採取的策略、最佳做法和經驗談,協助貴機構奠定良好基礎,實踐負責任的 AI 技術。
這個入門微學習課程主要介紹「負責任的 AI 技術」和其重要性,以及 Google 如何在自家產品中導入這項技術。本課程也會說明 Google 的 7 個 AI 開發原則。
Learn about new generative AI features in App Development, including Duet AI for VS Code, Cloud Workstations and Colab Enterprise, as well as application prototyping using natural language prompts in AppSheet.
完成「Introduction to Generative AI」、「Introduction to Large Language Models」和「Introduction to Responsible AI」課程,即可獲得技能徽章。通過最終測驗,就能展現您對生成式 AI 基本概念的掌握程度。 「技能徽章」是 Google Cloud 核發的數位徽章,用於表彰您對 Google Cloud 產品和服務的相關知識。您可以將技能徽章公布在社群媒體的個人資料中,向其他人分享您的成果。
這是一堂入門級的微學習課程,旨在探討大型語言模型 (LLM) 的定義和用途,並說明如何調整提示來提高 LLM 成效。此外,也會介紹多項 Google 工具,協助您自行開發生成式 AI 應用程式。
這個入門微學習課程主要說明生成式 AI 的定義和使用方式,以及此 AI 與傳統機器學習方法的差異。本課程也會介紹各項 Google 工具,協助您開發自己的生成式 AI 應用程式。
Organizations of all sizes are embracing the power and flexibility of the cloud to transform how they operate. However, managing and scaling cloud resources effectively can be a complex task. Scaling with Google Cloud Operations explores the fundamental concepts of modern operations, reliability, and resilience in the cloud, and how Google Cloud can help support these efforts. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Many traditional enterprises use legacy systems and applications that can't stay up-to-date with modern customer expectations. Business leaders often have to choose between maintaining their aging IT systems or investing in new products and services. "Modernize Infrastructure and Applications with Google Cloud" explores these challenges and offers solutions to overcome them by using cloud technology. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Cloud technology can bring great value to an organization, and combining the power of cloud technology with data has the potential to unlock even more value and create new customer experiences. “Exploring Data Transformation with Google Cloud” explores the value data can bring to an organization and ways Google Cloud can make data useful and accessible. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
There's much excitement about cloud technology and digital transformation, but often many unanswered questions. For example: What is cloud technology? What does digital transformation mean? How can cloud technology help your organization? Where do you even begin? If you've asked yourself any of these questions, you're in the right place. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey. If you want to learn about cloud technology so you can excel in your role and help build the future of your business, then this introductory course on digital transformation is for you. This course is part of the Cloud Digital Leader learning path.