가입 로그인

KarthikRajesh P R

회원 가입일: 2022

브론즈 리그

75225포인트
생성형 AI 에이전트: 조직 혁신 Earned 6월 19, 2025 EDT
생성형 AI 앱: 업무 혁신 Earned 6월 18, 2025 EDT
생성형 AI: 환경 살펴보기 Earned 6월 17, 2025 EDT
생성형 AI: 기본 개념 이해 Earned 5월 31, 2025 EDT
생성형 AI: 챗봇 그 이상의 가치 Earned 5월 25, 2025 EDT
Vertex AI Search and Google Agentspace UI Configurations Earned 5월 18, 2025 EDT
Create Data Stores for Gen AI Applications Earned 5월 18, 2025 EDT
Trust and Security with Google Cloud Earned 5월 18, 2025 EDT
Innovating with Google Cloud Artificial Intelligence Earned 5월 12, 2025 EDT
인코더-디코더 아키텍처 Earned 3월 19, 2025 EDT
Vertex AI로 머신러닝 작업(MLOps) 기능 관리 Earned 2월 5, 2025 EST
머신러닝 작업(MLOps): 시작하기 Earned 2월 4, 2025 EST
Recommendation Systems on Google Cloud Earned 2월 3, 2025 EST
프로덕션 머신러닝 시스템 Earned 2월 3, 2025 EST
Natural Language Processing on Google Cloud Earned 1월 27, 2025 EST
Vertex AI에서 머신러닝 솔루션 빌드 및 배포하기 Earned 1월 26, 2025 EST
Build MLOps Pipelines using Vertex AI Earned 1월 26, 2025 EST
Google Cloud에서 Keras를 사용해 ML 모델을 빌드, 학습, 배포하기 Earned 1월 20, 2025 EST
Serverless Data Processing with Dataflow: Develop Pipelines Earned 1월 17, 2025 EST
기업의 머신러닝 Earned 1월 10, 2025 EST
특성 추출 Earned 1월 3, 2025 EST
Cloud Run 기반 서버리스 애플리케이션 개발 Earned 12월 31, 2024 EST
Dataplex 시작하기 Earned 12월 31, 2024 EST
Google Cloud에서 ML API용으로 데이터 준비하기 Earned 12월 30, 2024 EST
API Gateway 시작하기 Earned 12월 28, 2024 EST
App Engine: 3 Ways Earned 12월 28, 2024 EST
Analyze Speech and Language with Google APIs Earned 12월 28, 2024 EST
Cloud Speech API: 세 가지 활용법 Earned 12월 28, 2024 EST
Launching into Machine Learning - 한국어 Earned 12월 26, 2024 EST
Looker 대시보드 및 보고서를 위해 데이터 준비하기 Earned 12월 26, 2024 EST
Develop Advanced Enterprise Search and Conversation Applications Earned 12월 26, 2024 EST
Integrate Vertex AI Search and Conversation into Voice and Chat Apps Earned 12월 26, 2024 EST
Exploring Vertex AI Search for Retail Earned 12월 25, 2024 EST
Use Machine Learning APIs on Google Cloud Earned 12월 25, 2024 EST
Cloud Run Functions: 3 Ways Earned 12월 25, 2024 EST
Get Started with Google Workspace Tools Earned 12월 24, 2024 EST
App Building with AppSheet Earned 12월 24, 2024 EST
어텐션 메커니즘 Earned 12월 23, 2024 EST
Get Started with Cloud Storage Earned 12월 23, 2024 EST
Pub/Sub 시작하기 Earned 12월 21, 2024 EST
Visualize Your Data in Looker Earned 12월 21, 2024 EST
Get Started with Looker Earned 12월 21, 2024 EST
Analyze Sentiment with Natural Language API Earned 12월 21, 2024 EST
Analyze Images with the Cloud Vision API Earned 12월 21, 2024 EST
Improving developer velocity with Gemini Code Assist Earned 12월 20, 2024 EST
Custom Search with Embeddings in Vertex AI Earned 12월 16, 2024 EST
Gemini 및 Imagen으로 실제 AI 애플리케이션 빌드하기 Earned 12월 15, 2024 EST
Gemini 및 Streamlit으로 생성형 AI 앱 개발하기 Earned 12월 15, 2024 EST
Gemini 멀티모달 및 멀티모달 RAG로 리치 문서 검사하기 Earned 12월 14, 2024 EST
벡터 검색 및 임베딩 Earned 12월 13, 2024 EST
Building Gen AI Apps with Vertex AI: Prompting and Tuning Earned 12월 12, 2024 EST
Vertex AI의 Gemini API로 생성형 AI 살펴보기 Earned 12월 12, 2024 EST
BigQuery의 Gemini로 생산성 향상 Earned 12월 10, 2024 EST
Google Cloud의 AI 및 머신러닝 소개 Earned 12월 9, 2024 EST
Text Prompt Engineering Techniques Earned 12월 6, 2024 EST
Vertex AI의 프롬프트 설계 Earned 12월 5, 2024 EST
Vertex AI Studio 소개 Earned 12월 4, 2024 EST
Generative AI Fundamentals Earned 12월 4, 2024 EST
생성형 AI를 위한 머신러닝 작업(MLOps) Earned 12월 4, 2024 EST
Generative AI for Business Leaders Earned 12월 3, 2024 EST
책임감 있는 AI: Google Cloud를 통한 AI 원칙 적용하기 Earned 12월 2, 2024 EST
책임감 있는 AI 소개 Earned 12월 2, 2024 EST
New Generative AI features in App Development Earned 4월 1, 2024 EDT
Generative AI Fundamentals - 한국어 Earned 7월 5, 2023 EDT
대규모 언어 모델 소개 Earned 7월 1, 2023 EDT
생성형 AI 소개 Earned 7월 1, 2023 EDT
Scaling with Google Cloud Operations Earned 4월 12, 2022 EDT
Modernize Infrastructure and Applications with Google Cloud Earned 4월 12, 2022 EDT
Exploring Data Transformation with Google Cloud Earned 4월 11, 2022 EDT
Digital Transformation with Google Cloud Earned 4월 10, 2022 EDT

'생성형 AI 에이전트: 조직 혁신'은 생성형 AI 리더 학습 과정의 다섯 번째이자 마지막 과정입니다. 이 과정에서는 조직이 커스텀 생성형 AI 에이전트를 사용하여 어떻게 특정 비즈니스 과제를 해결할 수 있는지 살펴봅니다. 모델, 추론 루프, 도구와 같은 에이전트의 구성요소를 살펴보며 기본적인 생성형 AI 에이전트를 빌드하는 실무형 실습을 진행합니다.

자세히 알아보기

'생성형 AI 앱: 업무 혁신'은 생성형 AI 리더 학습 과정의 네 번째 과정입니다. 이 과정에서는 Workspace를 위한 Gemini, NotebookLM 등 Google의 생성형 AI 애플리케이션을 소개합니다. 그라운딩, 검색 증강 생성, 효과적인 프롬프트 작성, 자동화된 워크플로 구축 등의 개념을 안내합니다.

자세히 알아보기

'생성형 AI: 환경 살펴보기'는 생성형 AI 리더 학습 과정의 세 번째 과정입니다. 생성형 AI는 업무 방식을 비롯해 주변 세계와 상호작용하는 방식에 변화를 일으키고 있습니다. 리더로서 생성형 AI를 활용하여 실질적인 비즈니스 성과를 얻으려면 어떻게 해야 할까요? 이 과정에서는 생성형 AI 솔루션 빌드의 다양한 계층, Google Cloud 제품, 솔루션을 선택할 때 고려해야 할 요소를 살펴봅니다.

자세히 알아보기

'생성형 AI: 기본 개념 이해'는 생성형 AI 리더 학습 과정의 두 번째 과정입니다. 이 과정에서는 생성형 AI의 기본 개념을 이해하기 위해 AI, ML, 생성형 AI의 차이점을 살펴보고 다양한 데이터 유형에서 생성형 AI로 어떻게 비즈니스 과제를 해결할 수 있는지 알아봅니다. 파운데이션 모델의 제한사항과 책임감 있고 안전한 AI 개발 및 배포의 주요 과제를 해결할 수 있도록 Google Cloud 전략에 관한 인사이트도 제공합니다.

자세히 알아보기

'생성형 AI: 챗봇 그 이상의 가치'는 생성형 AI 리더 학습 과정의 첫 번째 과정이며 요구되는 기본 요건이 없습니다. 이 과정은 챗봇에 대한 기본적인 이해를 넘어 조직을 위한 생성형 AI의 진정한 잠재력을 살펴보는 것을 목표로 합니다. 생성형 AI의 강력한 기능을 활용하는 데 중요한 파운데이션 모델 및 프롬프트 엔지니어링과 같은 개념을 살펴봅니다. 또한 조직을 위한 성공적인 생성형 AI 전략을 개발할 때 고려해야 할 중요한 사항도 안내합니다.

자세히 알아보기

Initial deployment of Vertex AI Search and Google Agentspace apps takes only a few clicks, but getting the configurations right can elevate a deployment from a basic off-the-shelf app to an excellent custom search or recommendations experience. In this course, you'll learn more about the many ways you can customize and improve search, recommendations, and Google Agentspace apps.

자세히 알아보기

Data stores represent a simple way to make content available to many types of generative AI applications, including search applications, recommendations engines, Google Agentspace apps, Agent Development Kit agents, and apps built with Google Gen AI or LangChain SDKs. Connect data from many sources include Cloud Storage, Google Drive, chat apps, mail apps, ticketing systems, third-party file storage providers, Salesforce, and many more.

자세히 알아보기

As organizations move their data and applications to the cloud, they must address new security challenges. The Trust and Security with Google Cloud course explores the basics of cloud security, the value of Google Cloud's multilayered approach to infrastructure security, and how Google earns and maintains customer trust in the cloud. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

자세히 알아보기

Artificial intelligence (AI) and machine learning (ML) represent an important evolution in information technologies that are quickly transforming a wide range of industries. “Innovating with Google Cloud Artificial Intelligence” explores how organizations can use AI and ML to transform their business processes. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

자세히 알아보기

이 과정은 기계 번역, 텍스트 요약, 질의 응답과 같은 시퀀스-투-시퀀스(Seq2Seq) 작업에 널리 사용되는 강력한 머신러닝 아키텍처인 인코더-디코더 아키텍처에 대한 개요를 제공합니다. 인코더-디코더 아키텍처의 기본 구성요소와 이러한 모델의 학습 및 서빙 방법에 대해 알아봅니다. 해당하는 실습 둘러보기에서는 TensorFlow에서 시를 짓는 인코더-디코더 아키텍처를 처음부터 간단하게 구현하는 코딩을 해봅니다.

자세히 알아보기

이 과정에서는 Google Cloud에서 프로덕션 ML 시스템을 배포, 평가, 모니터링, 운영하기 위한 MLOps 도구와 권장사항을 소개합니다. MLOps는 프로덕션에서 ML 시스템을 배포, 테스트, 모니터링, 자동화하는 방법론입니다. 학습자는 SDK 레이어에서 Vertex AI Feature Store의 스트리밍 수집을 사용하여 실습을 진행하게 됩니다.

자세히 알아보기

이 과정에서는 Google Cloud에서 프로덕션 ML 시스템 배포, 평가, 모니터링, 운영을 위한 MLOps 도구와 권장사항을 소개합니다. MLOps는 프로덕션에서 ML 시스템을 배포, 테스트, 모니터링, 자동화하는 방법론입니다. 머신러닝 엔지니어링 전문가들은 배포된 모델의 지속적인 개선과 평가를 위해 도구를 사용합니다. 이들이 협력하거나 때론 그 역할을 하는 데이터 과학자는 고성능 모델을 빠르고 정밀하게 배포할 수 있도록 모델을 개발합니다.

자세히 알아보기

In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.

자세히 알아보기

이 과정에서는 프로덕션 환경에서 고성능 ML 시스템을 빌드하기 위한 구성요소와 권장사항을 자세히 살펴봅니다. 정적 학습, 동적 학습, 정적 추론, 동적 추론, 분산 TensorFlow, TPU 등 고성능 ML 시스템 빌드와 관련된 일반적인 고려사항을 다룹니다. 이 과정에서는 정확한 예측 능력 외에도 양질의 ML 시스템을 만드는 특성을 탐구하는 데 중점을 둡니다.

자세히 알아보기

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

자세히 알아보기

Vertex AI에서 머신러닝 솔루션 빌드 및 배포하기 과정을 완료하여 중급 기술 배지를 획득하세요. 이 과정에서는 Google Cloud의 Vertex AI Platform, AutoML, 커스텀 학습 서비스를 사용해 머신러닝 모델을 학습, 평가, 조정, 설명, 배포하는 방법을 알아봅니다. 이 기술배지 과정은 전문 데이터 과학자 및 머신러닝 엔지니어를 대상으로 합니다. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 기술 배지 과정을 통해 대화형 실습 환경에서 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 디지털 배지를 받게 됩니다.

자세히 알아보기

This skill badge aims to evaluate a partner's ability to utilize various methods available to them to automate manual processes involved when deploying machine learning models using Vertex AI. Manual processes are often not scalable which is why advancing an organization's AI/ML adoption requires ML Ops processes to improve the rate of model training, experimentation and deployment.

자세히 알아보기

이 과정에서는 TensorFlow 및 Keras를 사용한 ML 모델 빌드, ML 모델의 정확성 개선, 사용 사례 확장을 위한 ML 모델 작성에 대해 다룹니다.

자세히 알아보기

In this second installment of the Dataflow course series, we are going to be diving deeper on developing pipelines using the Beam SDK. We start with a review of Apache Beam concepts. Next, we discuss processing streaming data using windows, watermarks and triggers. We then cover options for sources and sinks in your pipelines, schemas to express your structured data, and how to do stateful transformations using State and Timer APIs. We move onto reviewing best practices that help maximize your pipeline performance. Towards the end of the course, we introduce SQL and Dataframes to represent your business logic in Beam and how to iteratively develop pipelines using Beam notebooks.

자세히 알아보기

이 과정에서는 우수사례를 중심으로 ML 워크플로에 대한 실질적인 접근 방식을 취합니다. ML팀은 다양한 ML 비즈니스 요구사항과 사용 사례에 직면합니다. 팀에서는 데이터 관리 및 거버넌스에 필요한 도구를 이해하고 가장 효과적으로 데이터 전처리에 접근하는 방식을 파악해야 합니다. 두 가지 사용 사례를 위한 ML 모델을 빌드하는 세 가지 옵션이 팀에 제시됩니다. 이 과정에서는 목표를 달성하기 위해 AutoML, BigQuery ML 또는 커스텀 학습을 사용하는 이유를 설명합니다.

자세히 알아보기

이 과정에서는 Vertex AI Feature Store 사용의 이점, ML 모델의 정확성을 개선하는 방법, 가장 유용한 특성을 만드는 데이터 열을 찾는 방법을 살펴봅니다. 이 과정에는 BigQuery ML, Keras, TensorFlow를 사용한 특성 추출에 관한 콘텐츠와 실습도 포함되어 있습니다.

자세히 알아보기

중급 Cloud Run 기반 서버리스 애플리케이션 개발 기술 배지 과정을 완료하여 데이터 관리를 위한 Cloud Run과 Cloud Storage의 통합, Cloud Run 및 Pub/Sub를 사용하는 복원력 높은 비동기 시스템 설계, Cloud Run 기반 REST API 게이트웨이 구축, Cloud Run 기반 서비스 빌드 및 배포와 관련된 기술 역량을 입증하세요.

자세히 알아보기

초급 Dataplex 시작하기 기술 배지 과정을 완료하여 Dataplex 애셋 생성, 관점 유형 생성, Dataplex의 항목에 관점 적용과 관련된 기술 역량을 입증하세요.

자세히 알아보기

초급 Google Cloud에서 ML API용으로 데이터 준비하기 기술 배지를 완료하여 Dataprep by Trifacta로 데이터 정리, Dataflow에서 데이터 파이프라인 실행, Dataproc에서 클러스터 생성 및 Apache Spark 작업 실행, Cloud Natural Language API, Google Cloud Speech-to-Text API, Video Intelligence API를 포함한 ML API 호출과 관련된 기술 역량을 입증하세요. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 기술 배지 과정을 통해 대화형 실습 환경에서 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 기술 배지를 받을 수 있습니다.

자세히 알아보기

API Gateway 시작하기를 완료하고 기술 배지를 획득하세요. API Gateway를 사용해 완전 관리형 게이트웨이로 API를 배포, 보호, 관리하는 방법을 배우는 기술 배지 과정입니다.

자세히 알아보기

Earn a skill badge by completing the App Engine`:` 3 ways course, where you learn how to use App Engine with Python, Go, and PHP.

자세히 알아보기

Earn a skill badge by completing the Analyze Speech and Language with Google APIs quest, where you learn how to use the Natural Language and Speech APIs in real-world settings.

자세히 알아보기

Cloud Speech API: 세 가지 활용법 과정을 완료하고 초급 기술 배지를 획득하세요. 이 과정에서는 음성 관련 API 도구를 사용하여 음성을 합성하고 텍스트로 변환하는 방법을 배웁니다.

자세히 알아보기

이 과정에서는 먼저 데이터에 관해 논의하면서 데이터 품질을 개선하고 탐색적 데이터 분석을 수행하는 방법을 알아봅니다. Vertex AI AutoML과 코드를 한 줄도 작성하지 않고 ML 모델을 빌드하고, 학습시키고, 배포하는 방법을 설명합니다. 학습자는 Big Query ML의 이점을 이해할 수 있습니다. 그런 다음, 머신러닝(ML) 모델 최적화 방법과 일반화 및 샘플링으로 커스텀 학습용 ML 모델 품질을 평가하는 방법을 다룹니다.

자세히 알아보기

초급 Looker 대시보드 및 보고서를 위해 데이터 준비하기 기술 배지 과정을 완료하면 데이터를 필터링, 정렬, 피벗팅하고, 다른 Looker Explore의 결과를 병합하고, 함수 및 연산자를 사용해 데이터 분석 및 시각화를 위한 Looker 대시보드 및 보고서를 빌드하는 기술 역량을 입증할 수 있습니다.

자세히 알아보기

In this course, you'll use text embeddings for tasks like classification, outlier detection, text clustering and semantic search. You'll combine semantic search with the text generation capabilities of an LLM to build Retrieval Augmented Generation (RAG) solutions, such as for question-answering systems, using Google Cloud's Vertex AI and Google Cloud databases.

자세히 알아보기

This course on Integrate Vertex AI Search and Conversation into Voice and Chat Apps is composed of a set of labs to give you a hands on experience to interacting with new Generative AI technologies. You will learn how to create end-to-end search and conversational experiences by following examples. These technologies complement predefined intent-based chat experiences created in Dialogflow with LLM-based, generative answers that can be based on your own data. Also, they allow you to porvide enterprise-grade search experiences for internal and external websites to search documents, structure data and public websites.

자세히 알아보기

This course provides hands-on experience with Google Cloud's Search for Retail, focusing on practical skills in setting up and managing retail search functionalities using APIs and console configurations. Participants will engage with real-world scenarios to learn how to import product data, manage user events, configure search parameters, and optimize search results within a retail environment.

자세히 알아보기

Earn the advanced skill badge by completing the Use Machine Learning APIs on Google Cloud course, where you learn the basic features for the following machine learning and AI technologies: Cloud Vision API, Cloud Translation API, and Cloud Natural Language API.

자세히 알아보기

Earn a Introductory skill badge by completing the Cloud Run functions: 3 Ways course, where you learn how to use Cloud Run functions through the Google Cloud console and on the command line.

자세히 알아보기

Earn an introductory skill badge by completing the Get Started with Google Workspace Tools course, where you will get introduced to Google's collaborative platform and learn to use Gmail, Calendar, Meet, Drive, Sheets, and AppSheet.

자세히 알아보기

Earn a skill badge by completing the App Building with AppSheet course, where you learn how to build, configure, and publish apps using AppSheet.

자세히 알아보기

이 과정에서는 신경망이 입력 시퀀스의 특정 부분에 집중할 수 있도록 하는 강력한 기술인 주목 메커니즘을 소개합니다. 주목 메커니즘의 작동 방식과 이 메커니즘을 다양한 머신러닝 작업(기계 번역, 텍스트 요약, 질문 답변 등)의 성능을 개선하는 데 활용하는 방법을 알아봅니다.

자세히 알아보기

Earn a skill badge by completing the Get Started with Cloud Storage skill badge course, where you learn how to create a Cloud Storage bucket, how to use the Cloud Storage command line, and how to use Bucket Lock to protect objects in a bucket.

자세히 알아보기

Pub/Sub 시작하기 퀘스트를 완료하고 기술 배지를 획득하세요. 퀘스트에서는 Cloud 콘솔을 통해 Pub/Sub를 사용하는 방법, Cloud Scheduler 작업이 사용자를 지원하는 방법, Pub/Sub Lite를 사용하여 높은 볼륨의 이벤트 수집에 드는 비용을 절감할 수 있는 경우를 학습합니다. 기술 배지는 개인의 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 기술 배지 과정을 통해 대화형 실습 환경에서 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 기술 배지를 받을 수 있습니다.

자세히 알아보기

This skill badge course aims to unlock the power of data visualization and business intelligence reporting with Looker, and gain hands-on experience through labs.

자세히 알아보기

Earn a skill badge by completing the Get Started with Looker skill badge course, where you learn how to analyze, visualize, and curate data using Looker Studio and Looker.

자세히 알아보기

Earn a skill badge by completing the Analyze Sentiment with Natural Language API quest, where you learn how the API derives sentiment from text.

자세히 알아보기

Earn a skill badge by completing the Analyze Images with the Cloud Vision API quest, where you discover how to leverage the Cloud Vision API for various tasks, including extracting text from images.

자세히 알아보기

Learn how Gemini can revolutionize your ability to develop applications! This course helps developers go beyond the basics and learn how to integrate Gemini into their workflows.

자세히 알아보기

This course explores Google Cloud technologies to create and generate embeddings. Embeddings are numerical representations of text, images, video and audio, and play a pivotal role in many tasks that involve the identification of similar items, like Google searches, online shopping recommendations, and personalized music suggestions. Specifically, you’ll use embeddings for tasks like classification, outlier detection, clustering and semantic search. You’ll combine semantic search with the text generation capabilities of an LLM to build Retrieval Augmented Generation (RAG) systems and question-answering solutions, on your own proprietary data using Google Cloud’s Vertex AI.

자세히 알아보기

초급 'Gemini 및 Imagen으로 실제 AI 애플리케이션 빌드하기' 기술 배지 과정을 완료하여, 이미지 인식, 자연어 처리, Google의 강력한 Gemini 및 Imagen 모델을 사용한 이미지 생성, Vertex AI Platform에 애플리케이션 배포 등의 기술을 입증하세요.

자세히 알아보기

중급 Gemini 및 Streamlit으로 생성형 AI 앱 개발하기 기술 배지 과정을 완료하여 텍스트 생성, Python SDK와 Gemini API를 사용한 함수 호출 적용, Cloud Run으로 Streamlit 애플리케이션 배포 작업과 관련된 기술 역량을 입증하세요. 텍스트 생성을 위해 Gemini에 프롬프트를 입력하는 여러 가지 방법과 Cloud Shell을 사용해 Streamlit 애플리케이션을 테스트하고 반복하는 방법, Streamlit 애플리케이션을 Cloud Run에 배포된 Docker 컨테이너로 패키징하는 방법을 배울 수 있습니다.

자세히 알아보기

중급 Gemini 멀티모달 및 멀티모달 RAG로 리치 문서 검사하기 기술 배지 과정을 완료하여 다음 기술 역량을 입증하세요. 멀티모달 프롬프트를 사용하여 텍스트 및 시각적 데이터에서 정보 추출, 동영상 설명 생성, Gemini의 멀티모달 기능을 사용하여 동영상은 물론 그 밖의 추가 정보 검색, 텍스트와 이미지가 포함된 문서의 메타데이터 구축, 모든 관련 텍스트 청크 가져오기, Gemini의 멀티모달 검색 증강 생성(RAG)을 사용하여 인용 문구 인쇄 등이 있습니다. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 기술 배지 과정을 통해 대화형 실습 환경에서 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 기술 배지를 받을 수 있습니다.

자세히 알아보기

이 과정에서는 AI 기반 검색 기술, 도구, 애플리케이션을 살펴봅니다. 벡터 임베딩을 활용하는 시맨틱 검색, 시맨틱 방식과 키워드 방식을 결합한 하이브리드 검색, 그라운딩된 AI 에이전트로서 AI 할루시네이션을 최소화하는 검색 증강 생성(RAG)에 대해 알아보세요. Vertex AI 벡터 검색을 활용해 지능형 검색 엔진을 빌드하는 실무 경험을 쌓을 수 있습니다.

자세히 알아보기

(This course was previously named Multimodal Prompt Engineering with Gemini and PaLM) This course teaches how to use Vertex AI Studio, a Google Cloud console tool for rapidly prototyping and testing generative AI models. You learn to test sample prompts, design your own prompts, and customize foundation models to handle tasks that meet your application's needs. Whether you are looking for text, chat, code, image or speech generative experiences Vertex AI Studio offers you an interface to work with and APIs to integrate your production application.

자세히 알아보기

중급 Vertex AI의 Gemini API로 생성형 AI 살펴보기 기술 배지 과정을 완료하여 텍스트를 생성하고, 향상된 콘텐츠 제작을 위해 이미지 및 동영상을 분석하고, Gemini API 내에서 함수 호출 기법을 적용하는 기술 역량을 입증하세요. 정교한 Gemini 기법을 활용하고, 멀티모달 콘텐츠 생성을 살펴보고, AI 기반 프로젝트의 기능을 확장하는 방법을 알아보세요.

자세히 알아보기

이 과정에서는 데이터-AI 워크플로를 지원하는 AI 기반 기능 모음인 BigQuery의 Gemini에 관해 살펴봅니다. 이러한 기능에는 데이터 탐색 및 준비, 코드 생성 및 문제 해결, 워크플로 탐색 및 시각화 등이 있습니다. 이 과정은 개념 설명, 실제 사용 사례, 실무형 실습을 통해 데이터 실무자가 생산성을 향상하고 개발 파이프라인의 속도를 높이는 데 도움이 됩니다.

자세히 알아보기

이 과정에서는 예측 및 생성형 AI 프로젝트를 모두 빌드하는 Google Cloud 기반 AI 및 머신러닝(ML) 제품군을 소개합니다. AI 기반, 개발, 솔루션을 모두 포함하여 데이터에서 AI로 이어지는 수명 주기 전반에 걸쳐 사용할 수 있는 기술과 제품, 도구를 살펴봅니다. 이 과정의 목표는 흥미로운 학습 경험과 실제적인 실무형 실습을 통해 데이터 과학자, AI 개발자, ML 엔지니어의 기술 및 지식 역량 강화를 지원하는 것입니다.

자세히 알아보기

Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.

자세히 알아보기

초급 Vertex AI의 프롬프트 설계 기술 배지를 완료하여 Vertex AI 내 프롬프트 엔지니어링, 이미지 분석, 멀티모달 생성형 기술과 관련된 기술 역량을 입증하세요. 효과적인 프롬프트를 만들고 생성형 AI 출력을 안내하며 실제 마케팅 분야 시나리오에 Gemini 모델을 적용하는 방법을 알아보세요. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 기술 배지 과정을 통해 대화형 실습 환경에서 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 기술 배지를 받을 수 있습니다.

자세히 알아보기

이 과정에서는 생성형 AI 모델과 상호작용하고 비즈니스 아이디어의 프로토타입을 제작하여 프로덕션으로 출시할 수 있는 도구인 Vertex AI Studio를 소개합니다. 몰입감 있는 사용 사례, 흥미로운 강의, 실무형 실습을 통해 프롬프트부터 프로덕션에 이르는 수명 주기를 살펴보고 Vertex AI Studio를 Gemini 멀티모달 애플리케이션, 프롬프트 설계, 프롬프트 엔지니어링, 모델 조정에 활용하는 방법을 알아봅니다. 이 과정의 목표는 Vertex AI Studio로 프로젝트에서 생성형 AI의 잠재력을 활용하는 것입니다.

자세히 알아보기

Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.

자세히 알아보기

이 과정에서는 생성형 AI 모델을 배포하고 관리할 때 MLOps팀이 직면하는 고유한 과제를 파악하는 데 필요한 지식과 도구를 제공하고 Vertex AI가 어떻게 AI팀이 MLOps 프로세스를 간소화하고 생성형 AI 프로젝트에서 성공을 거둘 수 있도록 지원하는지 살펴봅니다.

자세히 알아보기

A Business Leader in Generative AI can articulate the capabilities of core cloud Generative AI products and services and understand how they benefit organizations. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey and how they can leverage Google Cloud's generative AI products to overcome these challenges.

자세히 알아보기

기업에서 인공지능과 머신러닝의 사용이 계속 증가함에 따라 책임감 있는 빌드의 중요성도 커지고 있습니다. 대부분의 기업은 책임감 있는 AI를 실천하기가 말처럼 쉽지 않습니다. 조직에서 책임감 있는 AI를 운영하는 방법에 관심이 있다면 이 과정이 도움이 될 것입니다. 이 과정에서 책임감 있는 AI를 위해 현재 Google Cloud가 기울이고 있는 노력, 권장사항, Google Cloud가 얻은 교훈을 알아보면 책임감 있는 AI 접근 방식을 구축하기 위한 프레임워크를 수립할 수 있을 것입니다.

자세히 알아보기

책임감 있는 AI란 무엇이고 이것이 왜 중요하며 Google에서는 어떻게 제품에 책임감 있는 AI를 구현하고 있는지 설명하는 입문용 마이크로 학습 과정입니다. Google의 7가지 AI 원칙도 소개합니다.

자세히 알아보기

Learn about new generative AI features in App Development, including Duet AI for VS Code, Cloud Workstations and Colab Enterprise, as well as application prototyping using natural language prompts in AppSheet.

자세히 알아보기

Introduction to Generative AI, Introduction to Large Language Models, Introduction to Responsible AI 과정을 완료하고 기술 배지를 획득하세요. 최종 퀴즈를 풀어보고 생성형 AI의 기본 개념을 제대로 이해했는지 확인해 보세요. 기술 배지는 Google Cloud 제품 및 서비스에 대한 지식을 숙지한 사람에게 Google Cloud에서 발급하는 디지털 배지입니다. 프로필을 공개하고 기술 배지를 소셜 미디어 프로필에 추가하여 공유하세요.

자세히 알아보기

이 과정은 입문용 마이크로 학습 과정으로, 대규모 언어 모델(LLM)이란 무엇이고, LLM을 활용할 수 있는 사용 사례로는 어떤 것이 있으며, 프롬프트 조정을 사용해 LLM 성능을 개선하는 방법은 무엇인지 알아봅니다. 또한 자체 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.

자세히 알아보기

생성형 AI란 무엇이고 어떻게 사용하며 전통적인 머신러닝 방법과는 어떻게 다른지 설명하는 입문용 마이크로 학습 과정입니다. 직접 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.

자세히 알아보기

Organizations of all sizes are embracing the power and flexibility of the cloud to transform how they operate. However, managing and scaling cloud resources effectively can be a complex task. Scaling with Google Cloud Operations explores the fundamental concepts of modern operations, reliability, and resilience in the cloud, and how Google Cloud can help support these efforts. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

자세히 알아보기

Many traditional enterprises use legacy systems and applications that can't stay up-to-date with modern customer expectations. Business leaders often have to choose between maintaining their aging IT systems or investing in new products and services. "Modernize Infrastructure and Applications with Google Cloud" explores these challenges and offers solutions to overcome them by using cloud technology. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

자세히 알아보기

Cloud technology can bring great value to an organization, and combining the power of cloud technology with data has the potential to unlock even more value and create new customer experiences. “Exploring Data Transformation with Google Cloud” explores the value data can bring to an organization and ways Google Cloud can make data useful and accessible. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

자세히 알아보기

There's much excitement about cloud technology and digital transformation, but often many unanswered questions. For example: What is cloud technology? What does digital transformation mean? How can cloud technology help your organization? Where do you even begin? If you've asked yourself any of these questions, you're in the right place. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey. If you want to learn about cloud technology so you can excel in your role and help build the future of your business, then this introductory course on digital transformation is for you. This course is part of the Cloud Digital Leader learning path.

자세히 알아보기