Md Tausif Raza Ansari
회원 가입일: 2024
골드 리그
9780포인트
회원 가입일: 2024
이 과정은 기계 번역, 텍스트 요약, 질의 응답과 같은 시퀀스-투-시퀀스(Seq2Seq) 작업에 널리 사용되는 강력한 머신러닝 아키텍처인 인코더-디코더 아키텍처에 대한 개요를 제공합니다. 인코더-디코더 아키텍처의 기본 구성요소와 이러한 모델의 학습 및 서빙 방법에 대해 알아봅니다. 해당하는 실습 둘러보기에서는 TensorFlow에서 시를 짓는 인코더-디코더 아키텍처를 처음부터 간단하게 구현하는 코딩을 해봅니다.
이 과정에서는 신경망이 입력 시퀀스의 특정 부분에 집중할 수 있도록 하는 강력한 기술인 주목 메커니즘을 소개합니다. 주목 메커니즘의 작동 방식과 이 메커니즘을 다양한 머신러닝 작업(기계 번역, 텍스트 요약, 질문 답변 등)의 성능을 개선하는 데 활용하는 방법을 알아봅니다.
기업에서 인공지능과 머신러닝의 사용이 계속 증가함에 따라 책임감 있는 빌드의 중요성도 커지고 있습니다. 대부분의 기업은 책임감 있는 AI를 실천하기가 말처럼 쉽지 않습니다. 조직에서 책임감 있는 AI를 운영하는 방법에 관심이 있다면 이 과정이 도움이 될 것입니다. 이 과정에서 책임감 있는 AI를 위해 현재 Google Cloud가 기울이고 있는 노력, 권장사항, Google Cloud가 얻은 교훈을 알아보면 책임감 있는 AI 접근 방식을 구축하기 위한 프레임워크를 수립할 수 있을 것입니다.
This quest will test your ability to create and deploy both Search applications and Chatbots using Vertex AI Agent Builder and Dialgflow. You will also be tasked with implementing a custom RAG system that uses the Discovery API to query a Vertex AI Data Store and use Gemini to answer user questions. You will use the following technologies and Google Cloud services: Vertex AI Agent Builder Search Apps Agents Gemini The assessment is divided into three main tasks: Building and deploying a Website Search App Deploying a Chatbot built using Vertex AI Agent Builder Creating a Custom Q&A Solution using the Discovery API
This course on Integrate Vertex AI Search and Conversation into Voice and Chat Apps is composed of a set of labs to give you a hands on experience to interacting with new Generative AI technologies. You will learn how to create end-to-end search and conversational experiences by following examples. These technologies complement predefined intent-based chat experiences created in Dialogflow with LLM-based, generative answers that can be based on your own data. Also, they allow you to porvide enterprise-grade search experiences for internal and external websites to search documents, structure data and public websites.
초급 과정에서는 Google Cloud에서 데이터 분석 워크플로와 데이터를 탐색, 분석, 시각화하여 이해관계자와 결과물을 공유하는 데 활용할 수 있는 도구에 대해 학습합니다. 이 과정에서는 우수사례를 실무형 실습, 강의, 퀴즈/데모와 함께 활용해 원시 데이터 세트에서 데이터를 정리하여 효과적인 시각화 및 대시보드를 만드는 방법을 설명합니다. 이미 데이터를 활용하고 있고 Google Cloud를 효과적으로 활용하는 방법을 알고 싶거나 경력을 발전시키고 싶은 학습자라면 이 과정으로 학습을 시작해 보세요. 업무에서 데이터 분석을 수행하거나 활용하는 거의 모든 학습자에게 도움이 될 수 있습니다.
Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.
Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.