Cesar Granjeno
Participante desde 2022
Liga Bronze
500 pontos
Participante desde 2022
Complete the intermediate Manage Data Models in Looker skill badge to demonstrate skills in the following: maintaining LookML project health; utilizing SQL runner for data validation; employing LookML best practices; optimizing queries and reports for performance; and implementing persistent derived tables and caching policies. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course, and the final assessment challenge lab, to receive a digital badge that you can share with your network.
In this course, you shadow a series of client meetings led by a Looker Professional Services Consultant.
By the end of this course, you should feel confident employing technical concepts to fulfill business requirements and be familiar with common complex design patterns.
In this course you will discover additional tools for your toolbox for working with complex deployments, building robust solutions, and delivering even more value.
Develop technical skills beyond LookML along with basic administration for optimizing Looker instances
This course reviews the processes for creating table calculations, pivots and visualizations
This course is designed for Looker users who want to create their own ad-hoc reports. It assumes experience of everything covered in our Get Started with Looker course (logging in, finding Looks & dashboards, adjusting filters, and sending data)
In this course you will discover Liquid, the templating language invented by Shopify and explore how it can be used in Looker to create dynamic links, content, formatting, and more.
Hands on course covering the main uses of extends and the three primary LookML objects extends are used on as well as some advanced usage of extends.
This course is designed to teach you about roles, permission sets and model sets. These are areas that are used together to manage what users can do and what they can see in Looker.
This course aims to introduce you to the basic concepts of Git: what it is and how it's used in Looker. You will also develop an in-depth knowledge of the caching process on the Looker platform, such as why they are used and why they work
This course provides an introduction to databases and summarized the differences in the main database technologies. This course will also introduce you to Looker and how Looker scales as a modern data platform. In the lessons, you will build and maintain standard Looker data models and establish the foundation necessary to learn Looker's more advanced features.
This course provides an iterative approach to plan, build, launch, and grow a modern, scalable, mature analytics ecosystem and data culture in an organization that consistently achieves established business outcomes. Users will also learn how to design and build a useful, easy-to-use dashboard in Looker. It assumes experience with everything covered in our Getting Started with Looker and Building Reports in Looker courses.
In this course, we’ll show you how organizations are aligning their BI strategy to most effectively achieve business outcomes with Looker. We'll follow four iterative steps: Plan, Build, Launch, Grow, and provide resources to take into your own services delivery to build Looker with the goal of achieving business outcomes.
By the end of this course, you should be able to articulate Looker's value propositions and what makes it different from other analytics tools in the market. You should also be able to explain how Looker works, and explain the standard components of successful service delivery.
Na última parte da série de cursos do Dataflow, vamos abordar os componentes do modelo operacional do Dataflow. Veremos ferramentas e técnicas para solucionar problemas e otimizar o desempenho do pipeline. Depois analisaremos as práticas recomendadas de teste, implantação e confiabilidade para pipelines do Dataflow. Por fim, faremos uma revisão dos modelos, que facilitam o escalonamento dos pipelines do Dataflow para organizações com centenas de usuários. Essas lições garantem que a plataforma de dados seja estável e resiliente a circunstâncias imprevistas.
Os pipelines de dados geralmente se encaixam em um desses três paradigmas: extração e carregamento (EL), extração, carregamento e transformação (ELT) ou extração, transformação e carregamento (ETL). Este curso descreve qual paradigma deve ser usado em determinadas situações e quando isso ocorre com dados em lote. Além disso, vamos falar sobre várias tecnologias no Google Cloud para transformação de dados, incluindo o BigQuery, a execução do Spark no Dataproc, gráficos de pipeline no Cloud Data Fusion e processamento de dados sem servidor com o Dataflow. Os participantes vão ganhar experiência prática na criação de componentes de pipelines de dados no Google Cloud usando o Qwiklabs.
Este curso apresenta os produtos e serviços de Big Data e machine learning do Google Cloud que auxiliam no ciclo de vida de dados para IA. Ele explica os processos, os desafios e os benefícios de criar um pipeline de Big Data e modelos de machine learning com a Vertex AI no Google Cloud.