Gabung Login

Akshada Porje

Menjadi anggota sejak 2022

Silver League

1160 poin
Certification Learning Path: Professional Cloud DevOps Engineer Earned Feb 26, 2024 EST
Dasar-Dasar Google Cloud: Infrastruktur Inti Earned Nov 6, 2022 EST
Preparing for Your Associate Cloud Engineer Journey Earned Nov 4, 2022 EDT
Machine Learning in the Enterprise Earned Okt 28, 2022 EDT
Feature Engineering Earned Okt 14, 2022 EDT
Build, Train and Deploy ML Models with Keras on Google Cloud Earned Agu 31, 2022 EDT
How Google Does Machine Learning Earned Agu 21, 2022 EDT
Google Cloud Big Data and Machine Learning Fundamentals Earned Agu 7, 2022 EDT

Good news! There’s a new updated version of this learning path available for you!Open the new Professional Cloud DevOps Engineer Certification Learning Path to begin, once you’ve selected the new path all your current progress will be reflected in the new version.

Pelajari lebih lanjut

Dasar-Dasar Google Cloud: Infrastruktur Inti memperkenalkan konsep dan terminologi penting untuk bekerja dengan Google Cloud. Melalui video dan lab interaktif, kursus ini menyajikan dan membandingkan banyak layanan komputasi dan penyimpanan Google Cloud, bersama dengan resource penting dan alat pengelolaan kebijakan.

Pelajari lebih lanjut

This course helps you structure your preparation for the Associate Cloud Engineer exam. You will learn about the Google Cloud domains covered by the exam and how to create a study plan to improve your domain knowledge.

Pelajari lebih lanjut

This course takes a real-world approach to the ML Workflow through a case study. An ML team faces several ML business requirements and use cases. The team must understand the tools required for data management and governance and consider the best approach for data preprocessing. The team is presented with three options to build ML models for two use cases. The course explains why they would use AutoML, BigQuery ML, or custom training to achieve their objectives.

Pelajari lebih lanjut

This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.

Pelajari lebih lanjut

This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.

Pelajari lebih lanjut

This course explores what ML is and what problems it can solve. The course also discusses best practices for implementing machine learning. You’re introduced to Vertex AI, a unified platform to quickly build, train, and deploy AutoML machine learning models. The course discusses the five phases of converting a candidate use case to be driven by machine learning, and why it’s important to not skip them. The course ends with recognizing the biases that ML can amplify and how to recognize them.

Pelajari lebih lanjut

This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.

Pelajari lebih lanjut