Unirse Acceder

Akshada Porje

Miembro desde 2022

Liga de Plata

1160 puntos
Certification Learning Path: Professional Cloud DevOps Engineer Earned feb 26, 2024 EST
Aspectos básicos de Google Cloud: Infraestructura principal Earned nov 6, 2022 EST
Preparación para el proceso de certificación Associate Cloud Engineer Earned nov 4, 2022 EDT
Aprendizaje automático en empresas Earned oct 28, 2022 EDT
Ingeniería de atributos Earned oct 14, 2022 EDT
Crea, entrena e implementa modelos de AA con Keras en Google Cloud Earned ago 31, 2022 EDT
How Google Does Machine Learning - Español Earned ago 21, 2022 EDT
Google Cloud Big Data and Machine Learning Fundamentals - Español Earned ago 7, 2022 EDT

Good news! There’s a new updated version of this learning path available for you!Open the new Professional Cloud DevOps Engineer Certification Learning Path to begin, once you’ve selected the new path all your current progress will be reflected in the new version.

Más información

Aspectos básicos de Google Cloud: Infraestructura principal presenta conceptos y terminología importantes para trabajar con Google Cloud. Mediante videos y labs prácticos, en este curso se presentan y comparan muchos de los servicios de procesamiento y almacenamiento de Google Cloud, junto con importantes recursos y herramientas de administración de políticas.

Más información

Este curso te permite estructurar tu preparación para el examen de Associate Cloud Engineer. Aprenderás sobre los dominios de Google Cloud que se incluyen en el examen y la forma de crear un plan de estudio para saber más de ellos.

Más información

En este curso, se aplica un enfoque real en el flujo de trabajo del AA a través de un caso de éxito. Un equipo de AA trabaja con varios requisitos empresariales y casos de uso de AA. El equipo debe comprender las herramientas necesarias para la administración de los datos y considerar el mejor enfoque para su procesamiento previo. Al equipo se le presentan tres opciones con las que puede crear modelos de AA para dos casos de uso. En el curso, se explica por qué el equipo usará AutoML, BigQuery ML o entrenamiento personalizado para lograr sus objetivos.

Más información

En este curso, se exploran los beneficios de utilizar Vertex AI Feature Store, cómo mejorar la exactitud de los modelos de AA y cómo descubrir cuáles columnas de datos producen los atributos más útiles. El curso también incluye contenido y labs sobre la ingeniería de atributos en los que se usan BigQuery ML, Keras y TensorFlow.

Más información

En este curso, se explica cómo crear modelos de AA con TensorFlow y Keras, cómo mejorar la exactitud de los modelos de AA y cómo escribir modelos de AA para uso escalado.

Más información

¿Cuáles son las prácticas recomendadas para implementar el aprendizaje automático en Google Cloud? ¿Qué es Vertex AI y cómo se puede utilizar la plataforma para crear, entrenar e implementar rápidamente modelos de aprendizaje automático de AutoML sin escribir una sola línea de código? ¿Qué es el aprendizaje automático? ¿Qué tipos de problemas puede solucionar? Google considera que el aprendizaje automático es diferente: se trata de proporcionar una plataforma unificada para conjuntos de datos administrados, un almacén de atributos, una forma de crear, entrenar e implementar modelos de aprendizaje automático sin escribir una sola línea de código, así como proporcionar la capacidad de etiquetar datos y crear notebooks de Workbench utilizando frameworks como TensorFlow, SciKit-learn, Pytorch, R y otros. Vertex AI Platform también ofrece la posibilidad de entrenar modelos personalizados, crear canalizaciones de componentes y realizar predicciones en línea y por lotes. Además, analiza…

Más información

En este curso, aprenderás sobre los productos y servicios de macrodatos y aprendizaje automático de Google Cloud involucrados en el ciclo de vida de datos a IA. También explorarás los procesos, los desafíos y los beneficios de crear una canalización de macrodatos y modelos de aprendizaje automático con Vertex AI en Google Cloud.

Más información