参加 ログイン

Gallardo Delgadillo Edgar

メンバー加入日: 2023

ブロンズリーグ

30745 ポイント
Data Engineering on Google Cloud の概要 Earned 11月 8, 2024 EST
Google Cloud Operations を使用したスケーリング Earned 7月 15, 2024 EDT
Google Cloud で実現する信頼とセキュリティ Earned 7月 15, 2024 EDT
Google Cloud によるインフラストラクチャとアプリケーションのモダナイゼーション Earned 7月 11, 2024 EDT
Google Cloud の AI を活用したイノベーション Earned 7月 11, 2024 EDT
Google Cloud によるデータ トランスフォーメーションの探求 Earned 7月 10, 2024 EDT
Google Cloud によるデジタル トランスフォーメーション Earned 7月 9, 2024 EDT
Google Cloud で Terraform を使ってみる Earned 5月 1, 2024 EDT
Google Cloud におけるアプリ開発環境の設定 Earned 4月 23, 2024 EDT
Compute Engine でのロード バランシングの実装 Earned 4月 23, 2024 EDT
Data Lake Modernization on Google Cloud: Cloud Composer Earned 10月 25, 2023 EDT
Google Cloud におけるアプリ開発環境の設定 Earned 10月 17, 2023 EDT
Getting Started with Apache Beam Earned 10月 13, 2023 EDT
ベースライン: インフラストラクチャ Earned 10月 11, 2023 EDT
DEPRECATED BigQuery Basics for Data Analysts Earned 10月 10, 2023 EDT
BigQuery for Marketing Analysts Earned 10月 9, 2023 EDT
Monitor and Manage Data in BigQuery Earned 10月 5, 2023 EDT
Cloud SQL Earned 10月 4, 2023 EDT
BigQuery のデータから分析情報を引き出す Earned 10月 2, 2023 EDT
Data Catalog Fundamentals Earned 9月 29, 2023 EDT
BigQuery for Data Warehousing Earned 9月 28, 2023 EDT
Building Codeless Pipelines on Cloud Data Fusion Earned 9月 28, 2023 EDT
Google Cloud の ML API 用にデータを準備 Earned 9月 26, 2023 EDT
BigQuery ML を使用した予測モデリング向けのデータ エンジニアリング Earned 9月 26, 2023 EDT
BigQuery でデータ ウェアハウスを構築する Earned 9月 26, 2023 EDT
ベースライン: データ、ML、AI Earned 9月 19, 2023 EDT
Professional Data Engineer の取得に向けた準備 Earned 9月 19, 2023 EDT
Dataflow を使用したサーバーレスのデータ処理: 運用 Earned 8月 11, 2023 EDT
Dataflow を使用したサーバーレスのデータ処理: パイプラインの開発 Earned 7月 12, 2023 EDT
Dataflow を使用したサーバーレスのデータ処理: 基礎 Earned 6月 27, 2023 EDT
Smart Analytics, Machine Learning, and AI on Google Cloud - 日本語版 Earned 6月 23, 2023 EDT
Google Cloud における復元力のあるストリーミング分析システムの構築 Earned 6月 16, 2023 EDT
Compute Engine でのロード バランシングの実装 Earned 6月 9, 2023 EDT
Google Cloud でのバッチデータ パイプラインの構築 Earned 6月 1, 2023 EDT
Google Cloud を使用したデータレイクとデータ ウェアハウスのモダナイゼーション Earned 5月 25, 2023 EDT
Google Cloud Big Data and Machine Learning Fundamentals - 日本語版 Earned 5月 5, 2023 EDT
Google Cloud Essentials Earned 4月 5, 2023 EDT

このコースでは、Google Cloud におけるデータ エンジニアリング、データ エンジニアの役割と責任、それらが Google Cloud の各サービスにどのように対応しているかについて学びます。また、データ エンジニアリングの課題に対処する方法も学習します。

詳細

あらゆる規模の組織が、事業運営の変革にクラウドの能力と柔軟性を活用しているなかで、クラウド リソースを効果的に管理、スケーリングすることが複雑なタスクになる可能性もあります。 ここでは、Google Cloud Operations を使用したスケーリングを通して、クラウドにおける最新の運用、信頼性、レジリエンスに関する基本的概念と、Google Cloud がこういった取り組みをどのように支援できるのかについて理解を深めます。 このコースは クラウド デジタル リーダー 学習プログラムの一部で、個人が自分の役割において成長し、ビジネスの未来を構築することを目的としています。

詳細

組織がデータやアプリケーションをクラウドへ移行する際には、新たなセキュリティ上の課題に対処することが求められます。この「Google Cloud で実現する信頼とセキュリティ」コースでは、クラウド セキュリティの基礎、およびインフラストラクチャ セキュリティに対する Google Cloud のマルチレイヤ型アプローチが持つ価値について学ぶとともに、Google がクラウドへのお客様の信頼をどのように獲得し維持しているのかについて学びます。 このコースは クラウド デジタル リーダー 学習プログラムの一部で、個人が自分の役割において成長し、ビジネスの未来を構築することを目的としています。

詳細

多くの従来型企業では、既存のシステムやアプリケーションで昨今の顧客の期待に応え続けることが難しくなっています。この場合、経営者は、老朽化した IT システムの保守を続けるのか、新たな製品やサービスに投資をするのか、選択を迫られることになります。「Google Cloud によるインフラストラクチャとアプリケーションのモダナイゼーション」ではそうした課題を明らかにするとともに、そうした課題をクラウド テクノロジーによって乗り越えるためのソリューションについて学びます。 このコースは クラウド デジタル リーダー 学習プログラムの一部で、個人が自分の役割において成長し、ビジネスの未来を構築することを目的としています。

詳細

AI と ML は、幅広い業種に急速な変革をもたらしているインフォメーション テクノロジーにおける重要な進化です。「Google Cloud の AI を活用したイノベーション」では、AI と ML を活用して組織でビジネス プロセスを変革する方法について学習します。 このコースは クラウド デジタル リーダー 学習プログラムの一部で、個人が自分の役割において成長し、ビジネスの未来を構築することを目的としています。

詳細

クラウド テクノロジーは組織に大きな価値をもたらします。クラウド テクノロジーの力をデータと組み合わせることで、その価値はさらに大きなものとなり、新しいカスタマー エクスペリエンスを提供できる可能性があります。「Google Cloud によるデータ トランスフォーメーションの探求」では、データが組織にもたらす価値と、Google Cloud でデータを有用かつアクセス可能なものにする方法を学習します。このコースは「クラウド デジタル リーダー」学習プログラムの一部で、個人が自分の役割において成長し、ビジネスの未来を構築することを目的としています。

詳細

クラウド テクノロジーとデジタル トランスフォーメーションに大きな期待が寄せられていますが、疑問点も多く残っています。 例: クラウド テクノロジーとは何か?デジタル トランスフォーメーションとは何を意味しているか?クラウド テクノロジーが組織にどう役立つのか?どこから着手するのか? このような疑問をお持ちなら、このコースはぴったりです。このコースでは、デジタル トランスフォーメーションにおいて多くの企業が直面する機会と課題のタイプについてご説明します。このデジタル トランスフォーメーションの入門コースなら、クラウド テクノロジーに関する知識を深めて自分の業務に活用するとともに、今後のビジネスの成長にも役立てていただけます。このコースは クラウド デジタル リーダー 学習プログラムの一部です。

詳細

このコースでは、Google Cloud 向けに Terraform を使用する方法の概要を説明します。このコースを受講すると、Terraform を使用して Infrastructure as Code を実装し、その主要な特性と機能を使って Google Cloud インフラストラクチャを作成および管理する方法について説明できるようになります。 また、Terraform を使用して Google Cloud のリソースを構築、管理する実践的な演習を受けられます。

詳細

「Google Cloud におけるアプリ開発環境の設定」コースを完了すると、スキルバッジを獲得できます。このコースでは、 Cloud Storage、Identity and Access Management、Cloud Functions、Pub/Sub のテクノロジーの基本機能を使用して、ストレージ中心のクラウド インフラストラクチャを構築し接続する方法を学びます。

詳細

Compute Engine でのロード バランシングの実装 スキルバッジを獲得できる入門コースを修了すると、次のスキルを実証できます: gcloud コマンドの記述と Cloud Shell の使用、Compute Engine における仮想マシンの作成とデプロイ、 ネットワーク ロードバランサと HTTP ロードバランサの構成。 スキルバッジは、Google Cloud の プロダクトとサービスに関する習熟度を示す Google Cloud 発行の限定デジタルバッジです。 これは、インタラクティブなハンズオン環境での知識の応用力を 証明するものです。この入門コースと最終評価チャレンジラボを完了し、 スキルバッジを獲得しましょう。このスキルバッジはネットワークで共有できます。

詳細

Welcome to Cloud Composer, where we discuss how to orchestrate data lake workflows with Cloud Composer.

詳細

「Google Cloud におけるアプリ開発環境の設定」コースを完了すると、スキルバッジを獲得できます。このコースでは、 Cloud Storage、Identity and Access Management、Cloud Functions、Pub/Sub のテクノロジーの基本機能を使用して、ストレージ中心のクラウド インフラストラクチャを構築し接続する方法を学びます。

詳細

Learn how to write and test pipelines with Dataflow and Apache Beam

詳細

これは、Google Cloud Essentials よりもレベルの高い内容の練習機会を求めている初心者のクラウド デベロッパーに おすすめのコースです。Cloud Storage だけでなく、 Monitoring や Cloud Run functions などの主要なアプリケーション サービスに関連するラボを通して、 実践的な経験を積むことが可能です。また、 あらゆる Google Cloud イニシアチブに応用できる有益なスキルを身に付けることができます。

詳細

Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.

詳細

マーケティングデータを洞察し、ダッシュボード構築はいかがでしょう?大規模な分析とモデル構築のために、すべてのデータを1か所にまとめましょう。クエリ方法を学び、また BigQuery を使用しながら、再現性があり、拡張可能、そして価値ある洞察を データ化します。 BigQuery は、Google が完全管理しており、 NoOpsで、低コストの分析データベースです。 BigQuery を使用すれば、管理すべき インフラストラクチャを持たずに、またはデータベース管理者を必要とすることなく、何テラバイトものデータをクエリすることができます。 BigQuery は SQL を使用し、従量制モデルを利用できます。 BigQuery を使用すれば、データ分析に集中でき、意味ある洞察を見い出だすことができます。

詳細

This skill badge aims to evaluate a partner's ability to utilize BigQuery's features and capabilities to manage and analyze large datasets. Learners will gain hands-on experience through labs and achieve solid understanding of BigQuery's foundational concepts and features.

詳細

Cloud SQL is a fully managed database service that stands out from its peers due to high performance, seamless integration, and impressive scalability. In this quest you will receive hands-on practice with the basics of Cloud SQL and quickly progress to advanced features, which you will apply to production frameworks and application environments. From creating instances and querying data with SQL, to building Deployment Manager scripts and connecting Cloud SQL instances with applications run on GKE containers, this quest will give you the knowledge and experience needed so you can start integrating this service right away.

詳細

「BigQuery のデータから分析情報を引き出す」の入門スキルバッジを獲得すると、 SQL クエリの作成、一般公開テーブルに対するクエリの実行、BigQuery へのサンプルデータの読み込み、BigQuery でのクエリ バリデータを使用した一般的な構文エラーのトラブルシューティング、 BigQuery データへの接続による Looker Studio でのレポート作成といったスキルを実証できます。

詳細

Data Catalog is deprecated and will be discontinued on January 30, 2026. You can still complete this course if you want to. For steps to transition your Data Catalog users, workloads, and content to Dataplex Catalog, see Transition from Data Catalog to Dataplex Catalog (https://cloud.google.com/dataplex/docs/transition-to-dataplex-catalog). Data Catalog is a fully managed and scalable metadata management service that empowers organizations to quickly discover, understand, and manage all of their data. In this quest you will start small by learning how to search and tag data assets and metadata with Data Catalog. After learning how to build your own tag templates that map to BigQuery table data, you will learn how to build MySQL, PostgreSQL, and SQLServer to Data Catalog Connectors.

詳細

データ ウェアハウスの構築または最適化を検討している場合は、BigQuery を使ったデータの抽出、変換、Google Cloud への読み込みに関するおすすめの方法を学びます。この一連のインタラクティブなラボでは、各種の大規模な BigQuery 一般公開データセットを使って独自のデータ ウェアハウスを作成、最適化します。BigQuery は、Google が低料金で提供する NoOps のフルマネージド分析データベースです。インフラストラクチャを所有して管理したり、データベース管理者を配置したりすることなく、テラバイト単位の大規模なデータでクエリを実行できます。また、SQL が採用されており、従量課金制モデルでご利用いただけます。このような特徴を活かし、お客様は有用な情報を得るためのデータ分析に専念できます。

詳細

This quest offers hands-on practice with Cloud Data Fusion, a cloud-native, code-free, data integration platform. ETL Developers, Data Engineers and Analysts can greatly benefit from the pre-built transformations and connectors to build and deploy their pipelines without worrying about writing code. This Quest starts with a quickstart lab that familiarises learners with the Cloud Data Fusion UI. Learners then get to try running batch and realtime pipelines as well as using the built-in Wrangler plugin to perform some interesting transformations on data.

詳細

「Google Cloud の ML API 用にデータを準備」コースの入門スキルバッジを獲得できるアクティビティを修了すると、 Dataprep by Trifacta を使用したデータのクリーニング、Dataflow でのデータ パイプラインの実行、Dataproc でのクラスタの作成と Apache Spark ジョブの実行、 Cloud Natural Language API、Google Cloud Speech-to-Text API、Video Intelligence API などの ML API の呼び出しに関するスキルを証明できます。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキルバッジ コースと最終評価チャレンジラボを修了し、 スキルバッジを獲得してネットワークで共有しましょう。

詳細

BigQuery ML を使用した予測モデリング向けのデータ エンジニアリング」のスキルバッジを獲得できる中級コースを修了すると、 Dataprep by Trifacta を使用した BigQuery へのデータ変換パイプラインの構築、 Cloud Storage、Dataflow、BigQuery を使用した抽出、変換、読み込み(ETL)ワークフローの構築、 BigQuery ML を使用した ML モデルの構築に関するスキルを実証できます。

詳細

「BigQuery でデータ ウェアハウスを構築する」スキルバッジを獲得できる中級コースを修了すると、 データの結合による新しいテーブルの作成、結合のトラブルシューティング、UNION を使用したデータの連結、日付パーティション分割テーブルの作成、 BigQuery での JSON、配列、構造体の操作に関するスキルを証明できます。 スキルバッジは、Google Cloud の プロダクトとサービスに関する習熟度を示す Google Cloud 発行の限定デジタルバッジです。 これは、インタラクティブなハンズオン環境での知識の応用力を 証明するものです。このスキルバッジ コースと最終評価チャレンジラボを修了し、 デジタルバッジを獲得してネットワークで共有しましょう。

詳細

ビッグデータ、ML、AI は今日のコンピュータ業界ではホットなトピックですが、 これらの分野は非常に専門性が高く、 入門レベルの教材を見つけるのは困難です。幸いなことに、Google Cloud はこうした分野でユーザー フレンドリーなサービスを提供しており、 この入門レベルのコースを通じて、BigQuery、Cloud Speech API、 Video Intelligence などのツールを使い始めるための第一歩を踏み出せます。

詳細

このコースでは、Professional Data Engineer(PDE)認定資格試験に向けた学習計画を作成できます。学習者は、試験の範囲を把握できます。また、試験への準備状況を把握して、個々の学習計画を作成します。

詳細

Dataflow シリーズの最後のコースでは、Dataflow 運用モデルのコンポーネントを紹介します。パイプラインのパフォーマンスのトラブルシューティングと最適化に役立つツールと手法を検証した後で、Dataflow パイプラインのテスト、デプロイ、信頼性に関するベスト プラクティスについて確認します。最後に、数百人のユーザーがいる組織に対して Dataflow パイプラインを簡単に拡張するためのテンプレートについても確認します。これらの内容を習得することで、データ プラットフォームの安定性を保ち、予期せぬ状況に対する回復力を確保できるようになります。

詳細

Dataflow コースシリーズの 2 回目である今回は、Beam SDK を使用したパイプラインの開発について詳しく説明します。まず、Apache Beam のコンセプトについて復習します。次に、ウィンドウ、ウォーターマーク、トリガーを使用したストリーミング データの処理について説明します。さらに、パイプラインのソースとシンクのオプション、構造化データを表現するためのスキーマ、State API と Timer API を使用してステートフル変換を行う方法について説明します。続いて、パイプラインのパフォーマンスを最大化するためのベスト プラクティスを再確認します。コースの終盤では、Beam でビジネス ロジックを表現するための SQL と DataFrame、および Beam ノートブックを使用してパイプラインを反復的に開発する方法を説明します。

詳細

このコースは、Dataflow を使用したサーバーレスのデータ処理に関する 3 コースシリーズのパート 1 です。この最初のコースでは、始めに Apache Beam とは何か、そして Dataflow とどのように関係しているかを復習します。次に、Apache Beam のビジョンと Beam Portability フレームワークの利点について説明します。Beam Portability フレームワークによって、デベロッパーが好みのプログラミング言語と実行バックエンドを使用できるビジョンが実現します。続いて、Dataflow によってどのように費用を節約しながらコンピューティングとストレージを分離できるか、そして識別ツール、アクセスツール、管理ツールがどのように Dataflow パイプラインと相互に機能するかを紹介します。最後に、Dataflow でそれぞれのユースケースに合った適切なセキュリティ モデルを実装する方法について学習します。

詳細

ML をデータ パイプラインに組み込むと、データから分析情報を抽出する能力を向上できます。このコースでは、Google Cloud でデータ パイプラインに ML を含める複数の方法について説明します。カスタマイズがほとんど、またはまったく必要ない場合のために、このコースでは AutoML について説明します。よりカスタマイズされた ML 機能については、Notebooks と BigQuery の機械学習(BigQuery ML)を紹介します。また、Vertex AI を使用して ML ソリューションを本番環境に導入する方法も説明します。

詳細

ストリーミングによって企業が事業運営に関するリアルタイムの指標を取得できるようになり、ストリーミング データの処理を行う機会が増えてきました。このコースでは、Google Cloud でストリーミング データ パイプラインを構築する方法について学習します。受信ストリーミング データの処理のために Pub/Sub について説明します。また、このコースでは、Dataflow を使用してストリーミング データの集計や変換を行う方法、処理済みのレコードを分析用に BigQuery や Bigtable に保存する方法についても説明します。さらに、Qwiklabs を使用して Google Cloud でストリーミング データ パイプラインのコンポーネントを構築する実践演習を行います。

詳細

Compute Engine でのロード バランシングの実装 スキルバッジを獲得できる入門コースを修了すると、次のスキルを実証できます: gcloud コマンドの記述と Cloud Shell の使用、Compute Engine における仮想マシンの作成とデプロイ、 ネットワーク ロードバランサと HTTP ロードバランサの構成。 スキルバッジは、Google Cloud の プロダクトとサービスに関する習熟度を示す Google Cloud 発行の限定デジタルバッジです。 これは、インタラクティブなハンズオン環境での知識の応用力を 証明するものです。この入門コースと最終評価チャレンジラボを完了し、 スキルバッジを獲得しましょう。このスキルバッジはネットワークで共有できます。

詳細

通常、データ パイプラインは、「抽出、読み込み(EL)」、「抽出、読み込み、変換(ELT)」、「抽出、変換、読み込み(ETL)」のいずれかの考え方に分類できます。このコースでは、バッチデータではどの枠組みを、どのような場合に使用するのかについて説明します。本コースではさらに、BigQuery、Dataproc 上での Spark の実行、Cloud Data Fusion のパイプラインのグラフ、Dataflow でのサーバーレスのデータ処理など、データ変換用の複数の Google Cloud テクノロジーについて説明します。また、Qwiklabs を使用して Google Cloud でデータ パイプラインのコンポーネントを構築する実践演習を行います。

詳細

すべてのデータ パイプラインには、データレイクとデータ ウェアハウスという 2 つの主要コンポーネントがあります。このコースでは、各ストレージ タイプのユースケースを紹介し、Google Cloud で利用可能なデータレイクとデータ ウェアハウスのソリューションを技術的に詳しく説明します。また、データ エンジニアの役割や、効果的なデータ パイプラインが事業運営にもたらすメリットについて確認し、クラウド環境でデータ エンジニアリングを行うべき理由を説明します。 これは「Data Engineering on Google Cloud」シリーズの最初のコースです。このコースを修了したら、「Google Cloud でのバッチデータ パイプラインの構築」コースに登録してください。

詳細

このコースでは、データから AI へのライフサイクルをサポートする Google Cloud のビッグデータと ML のプロダクトやサービスを紹介します。また、Google Cloud で Vertex AI を使用してビッグデータ パイプラインと ML モデルを作成する際のプロセス、課題、メリットについて説明します。

詳細

この入門レベルのクエストでは、Google Cloud の基本的なツールやサービスに関する実践演習を行います。「Google Cloud Essentials」は Qwiklabs で特に人気のあるクエストですが、それはクラウドの予備知識がほとんどなくても、あらゆる Google Cloud プロジェクトに応用できる実際的な経験を積めるからです。 「Google Cloud Essentials」では、Cloud Shell コマンドの記述、初めての仮想マシンのデプロイ、Kubernetes Engine 上でのアプリケーション実行と負荷分散など、Google Cloud の主な機能を紹介します。主なコンセプトは 1 分間のビデオで説明されています。

詳細