Ambarish Chatterjee
Member since 2022
Bronze League
2700 points
Member since 2022
Bu kursta Vertex AI Studio tanıtılmaktadır. Bu araç, üretken yapay zeka modelleriyle etkileşime geçmek, kurumsal fikirlerin prototipini oluşturmak ve bunları gerçek hayatta uygulamak için kullanılır. Gerçek hayattan kullanım alanları, etkileşimli dersler ve uygulamalı laboratuvarlar aracılığıyla, ilk istemden son ürüne uzanan yaşam döngüsünü keşfedecek ve çoklu format destekli Gemini uygulamaları, istem tasarımı, istem mühendisliği ve model ayarlama konularında Vertex AI Studio'dan nasıl yararlanabileceğinizi öğreneceksiniz. Bu kursun amacı, Vertex AI Studio'yu kullanarak projelerinizde üretken yapay zekadan yararlanabilmenizi sağlamaktır.
This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.
This content is deprecated. Please see the latest version of the course, here.
Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.
Bu, üretken yapay zekanın ne olduğunu, nasıl kullanıldığını ve geleneksel makine öğrenme yöntemlerinden nasıl farklı olduğunu açıklamayı amaçlayan giriş seviyesi bir mikro öğrenme kursudur. Ayrıca kendi üretken yapay zeka uygulamalarınızı geliştirmenize yardımcı olacak Google Araçlarını da kapsar.
Bu kurs, dönüştürücü mimarisini ve dönüştürücülerden çift yönlü kodlayıcı temsilleri (BERT - Encoder Representations from Transformers) modelini tanıtmaktadır. Kursta, öz dikkat mekanizması gibi dönüştürücü mimarisinin ana bileşenlerini ve BERT modelini oluşturmak için dönüştürücünün nasıl kullanıldığını öğreneceksiniz. Ayrıca sınıflandırma, soru yanıtlama ve doğal dil çıkarımı gibi BERT'in kullanılabileceği çeşitli görevler hakkında da bilgi sahibi olacaksınız. Kursun tahmini süresi 45 dakikadır.
Bu kursta, kodlayıcı-kod çözücü mimarisi özet olarak anlatılmaktadır. Bu mimari; makine çevirisi, metin özetleme ve soru yanıtlama gibi "sıradan sıraya" görevlerde yaygın olarak kullanılan, güçlü bir makine öğrenimi mimarisidir. Kursta, kodlayıcı-kod çözücü mimarisinin ana bileşenlerini ve bu modellerin nasıl eğitilip sunulacağını öğreneceksiniz. Laboratuvarın adım adım açıklamalı kılavuz bölümünde ise sıfırdan şiir üretmek için TensorFlow'da kodlayıcı-kod çözücü mimarisinin basit bir uygulamasını yazacaksınız.
Bu kursta, görüntü üretme alanında gelecek vadeden bir makine öğrenimi modelleri ailesi olan "difüzyon modelleri" tanıtılmaktadır. Difüzyon modelleri fizikten, özellikle de termodinamikten ilham alır. Geçtiğimiz birkaç yıl içinde, gerek araştırma gerekse endüstri alanında difüzyon modelleri popülerlik kazandı. Google Cloud'daki son teknoloji görüntü üretme model ve araçlarının çoğu, difüzyon modelleri ile desteklenmektedir. Bu kursta, difüzyon modellerinin ardındaki teori tanıtılmakta ve bu modellerin Vertex AI'da nasıl eğitilip dağıtılacağı açıklanmaktadır.
Kurumsal yapay zeka ve makine öğreniminin kullanımı artmaya devam ettikçe, bunu sorumlu bir şekilde oluşturmanın önemi de artıyor. Sorumlu yapay zeka hakkında konuşmanın, onu uygulamaya koymaktan çok daha kolay olabilmesi burada bir zorluk oluşturmaktadır. Kuruluşunuzda sorumlu yapay zekayı nasıl işlevsel hale getireceğinizi öğrenmekle ilgileniyorsanız, bu kurs tam size göre. Bu kurs, Google Cloud'un sorumlu yapay zeka yaklaşımını nasıl uyguladığını derinlemesine inceleyerek, kendi sorumlu yapay zeka stratejinizi oluşturmanız için size kapsamlı bir çerçeve sunuyor.
Earn a skill badge by completing the Introduction to Generative AI, Introduction to Large Language Models and Introduction to Responsible AI courses. By passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.
Bu kurs, sorumlu yapay zekanın ne olduğunu, neden önemli olduğunu ve Google'ın sorumlu yapay zekayı ürünlerinde nasıl uyguladığını açıklamayı amaçlayan giriş seviyesinde bir mikro öğrenme kursudur. Ayrıca Google'ın 7 yapay zeka ilkesini de tanıtır.
Bu kursta nöral ağların, giriş sırasının belirli bölümlerine odaklanmasına olanak tanıyan güçlü bir teknik olan dikkat mekanizması tanıtılmaktadır. Kursta, dikkat mekanizmasının çalışma şeklini ve makine öğrenimi, metin özetleme ve soru yanıtlama gibi çeşitli makine öğrenimi görevlerinin performansını artırmak için nasıl kullanılabileceğini öğreneceksiniz.
Bu giriş seviyesi mikro öğrenme kursunda büyük dil modelleri (BDM) nedir, hangi kullanım durumlarında kullanılabileceği ve büyük dil modelleri performansını artırmak için nasıl istem ayarlaması yapabileceğiniz keşfedilecektir. Ayrıca kendi üretken yapay zeka uygulamalarınızı geliştirmenize yardımcı olacak Google araçları hakkında bilgi verilecektir.
In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.
This course explores what ML is and what problems it can solve. The course also discusses best practices for implementing machine learning. You’re introduced to Vertex AI, a unified platform to quickly build, train, and deploy AutoML machine learning models. The course discusses the five phases of converting a candidate use case to be driven by machine learning, and why it’s important to not skip them. The course ends with recognizing the biases that ML can amplify and how to recognize them.
This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.