가입 로그인

Yassine Rakibi

회원 가입일: 2024

골드 리그

42530포인트
Streaming Analytics into BigQuery Earned 11월 6, 2024 EST
Automate Data Migrations to BigQuery Earned 11월 6, 2024 EST
Monitor and Manage Data in BigQuery Earned 10월 31, 2024 EDT
Perform Predictive Data Analysis in BigQuery Earned 10월 29, 2024 EDT
BigQuery ML을 사용한 예측 모델링을 위한 데이터 엔지니어링 Earned 10월 28, 2024 EDT
BigQuery ML로 ML 모델 만들기 Earned 10월 25, 2024 EDT
BigQuery로 데이터 웨어하우스 빌드 Earned 10월 24, 2024 EDT
Cloud Storage에서 안전한 데이터 레이크 만들기 Earned 10월 22, 2024 EDT
Tag and Discover BigLake Data Earned 10월 22, 2024 EDT
Google Cloud에서 ML API용으로 데이터 준비하기 Earned 10월 21, 2024 EDT
BigQuery 데이터에서 인사이트 도출 Earned 10월 21, 2024 EDT
이미지 캡셔닝 모델 만들기 Earned 10월 18, 2024 EDT
이미지 생성 소개 Earned 10월 18, 2024 EDT
보안 및 ID 기초 Earned 10월 18, 2024 EDT
Google Cloud의 AI 및 머신러닝 소개 Earned 10월 15, 2024 EDT
Scaling with Google Cloud Operations Earned 10월 15, 2024 EDT
Trust and Security with Google Cloud Earned 10월 15, 2024 EDT
Modernize Infrastructure and Applications with Google Cloud Earned 10월 15, 2024 EDT
Innovating with Google Cloud Artificial Intelligence Earned 10월 7, 2024 EDT
Exploring Data Transformation with Google Cloud Earned 10월 7, 2024 EDT
Digital Transformation with Google Cloud Earned 10월 7, 2024 EDT
Transformer 모델 및 BERT 모델 Earned 10월 3, 2024 EDT
인코더-디코더 아키텍처 Earned 10월 2, 2024 EDT
Text Prompt Engineering Techniques Earned 10월 1, 2024 EDT
Generative AI Fundamentals Earned 10월 1, 2024 EDT
Vertex AI Studio 소개 Earned 9월 30, 2024 EDT
Data Lake Modernization on Google Cloud Earned 9월 30, 2024 EDT
Data Catalog Fundamentals Earned 9월 27, 2024 EDT
Get Started with Sensitive Data Protection Earned 9월 24, 2024 EDT
Secure BigLake Data Earned 9월 23, 2024 EDT
책임감 있는 AI: Google Cloud를 통한 AI 원칙 적용하기 Earned 9월 21, 2024 EDT
책임감 있는 AI 소개 Earned 9월 20, 2024 EDT
Generative AI for Business Leaders Earned 9월 20, 2024 EDT
Dataplex로 데이터 메시 빌드하기 Earned 9월 19, 2024 EDT
Dataplex 시작하기 Earned 9월 12, 2024 EDT
어텐션 메커니즘 Earned 9월 9, 2024 EDT

Earn a skill badge by completing the Streaming Analytics into BigQuery quest, where you use Pub/Sub, Dataflow and BigQuery together to stream data for analytics. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this Skill Badge, and the final assessment challenge lab, to receive a digital badge that you can share with your network.

자세히 알아보기

This skill badge aims to provide partners an introduction to BigQuery Data Transfer Service and Migration Service, two powerful tools for managing and migrating data in the cloud. Learners will learn how to leverage these tools to efficiently migrate and manage data, and gain hands-on experience through labs.

자세히 알아보기

This skill badge aims to evaluate a partner's ability to utilize BigQuery's features and capabilities to manage and analyze large datasets. Learners will gain hands-on experience through labs and achieve solid understanding of BigQuery's foundational concepts and features.

자세히 알아보기

Earn the intermediate skill badge by completing the Perform Predictive Data Analysis in BigQuery course, where you will gain practical experience on the fundamentals of sports data science using BigQuery, including how to create a soccer dataset in BigQuery by importing CSV and JSON files; harness the power of BigQuery with sophisticated SQL analytical concepts, including using BigQuery ML to train an expected goals model on the soccer event data, and evaluate the impressiveness of World Cup goals.

자세히 알아보기

중급 BigQuery ML을 사용한 예측 모델링을 위한 데이터 엔지니어링 기술 배지를 획득하여 Dataprep by Trifact로 데이터 변환 파이프라인을 BigQuery에 빌드, Cloud Storage, Dataflow, BigQuery를 사용한 ETL(추출, 변환, 로드) 워크플로 빌드, BigQuery ML을 사용하여 머신러닝 모델을 빌드하는 기술 역량을 입증할 수 있습니다. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 기술 배지 과정을 통해 대화형 실습 환경에서 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 디지털 배지를 받을 수 있습니다.

자세히 알아보기

중급 BigQuery ML로 ML 모델 만들기 기술 배지 과정을 완료하면 BigQuery ML로 머신러닝 모델을 만들고 평가하여 데이터 예측을 수행하는 기술 역량을 입증할 수 있습니다. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 기술 배지 과정을 통해 대화형 실습 환경에서 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 기술 배지를 받을 수 있습니다.

자세히 알아보기

중급 BigQuery로 데이터 웨어하우스 빌드 기술 배지를 완료하여 데이터를 조인하여 새 테이블 만들기, 조인 관련 문제 해결, 합집합으로 데이터 추가, 날짜로 파티션을 나눈 테이블 만들기, BigQuery에서 JSON, 배열, 구조체 작업하기와 관련된 기술 역량을 입증하세요. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 대화형 실습 환경을 통해 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 기술 배지를 받을 수 있습니다.

자세히 알아보기

Cloud Storage에서 안전한 데이터 레이크 만들기 퀘스트를 완료하고 기술 배지를 획득하세요. 이 퀘스트에서는 Cloud Storage, IAM, Dataplex를 사용해 Google Cloud에서 안전한 데이터 레이크를 만들어 봅니다.

자세히 알아보기

Earn a skill badge by completing the Tag and Discover BigLake Data quest, where you use BigQuery, BigLake, and Data Catalog within Dataplex to create, tag, and discover BigLake tables. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this Skill Badge, and the final assessment challenge lab, to receive a digital badge that you can share with your network.

자세히 알아보기

초급 Google Cloud에서 ML API용으로 데이터 준비하기 기술 배지를 완료하여 Dataprep by Trifacta로 데이터 정리, Dataflow에서 데이터 파이프라인 실행, Dataproc에서 클러스터 생성 및 Apache Spark 작업 실행, Cloud Natural Language API, Google Cloud Speech-to-Text API, Video Intelligence API를 포함한 ML API 호출과 관련된 기술 역량을 입증하세요. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 기술 배지 과정을 통해 대화형 실습 환경에서 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 기술 배지를 받을 수 있습니다.

자세히 알아보기

초급 BigQuery 데이터에서 인사이트 도출 기술 배지 과정을 완료하여 SQL 쿼리 작성, 공개 테이블 쿼리, BigQuery로 샘플 데이터 로드, BigQuery의 쿼리 검사기를 통한 일반적인 문법 오류 문제 해결, BigQuery 데이터를 연결해 Looker Studio에서 보고서를 생성하는 작업과 관련된 기술 역량을 입증하세요. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 기술 배지 과정을 통해 대화형 실습 환경에서 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 기술 배지를 받게 됩니다.

자세히 알아보기

이 과정에서는 딥 러닝을 사용해 이미지 캡션 모델을 만드는 방법을 알아봅니다. 인코더 및 디코더와 모델 학습 및 평가 방법 등 이미지 캡션 모델의 다양한 구성요소에 대해 알아봅니다. 이 과정을 마치면 자체 이미지 캡션 모델을 만들고 이를 사용해 이미지의 설명을 생성할 수 있게 됩니다.

자세히 알아보기

이 과정에서는 최근 이미지 생성 분야에서 가능성을 보여준 머신러닝 모델 제품군인 확산 모델을 소개합니다. 확산 모델은 열역학을 비롯한 물리학에서 착안했습니다. 지난 몇 년 동안 확산 모델은 연구계와 업계 모두에서 주목을 받았습니다. 확산 모델은 Google Cloud의 다양한 최신 이미지 생성 모델과 도구를 뒷받침합니다. 이 과정에서는 확산 모델의 이론과 Vertex AI에서 이 모델을 학습시키고 배포하는 방법을 소개합니다.

자세히 알아보기

Google Cloud 서비스는 보안에 있어 타협하지 않습니다. Google Cloud에서 프로젝트 전반의 보안과 ID를 보장하는 전용 도구를 개발했습니다. 이 초급 과정에서는 실무형 실습을 통해 Google Cloud의 Identity and Access Management(IAM) 서비스에 대해 알아봅니다. 이 서비스는 사용자 및 가상 머신 계정을 관리할 때 사용됩니다. VPC 및 VPN을 프로비저닝하여 네트워크 보안을 경험하고 보안 위협 및 데이터 손실 방지를 위해 사용할 수 있는 도구를 알아봅니다.

자세히 알아보기

이 과정에서는 예측 및 생성형 AI 프로젝트를 모두 빌드하는 Google Cloud 기반 AI 및 머신러닝(ML) 제품군을 소개합니다. AI 기반, 개발, 솔루션을 모두 포함하여 데이터에서 AI로 이어지는 수명 주기 전반에 걸쳐 사용할 수 있는 기술과 제품, 도구를 살펴봅니다. 이 과정의 목표는 흥미로운 학습 경험과 실제적인 실무형 실습을 통해 데이터 과학자, AI 개발자, ML 엔지니어의 기술 및 지식 역량 강화를 지원하는 것입니다.

자세히 알아보기

Organizations of all sizes are embracing the power and flexibility of the cloud to transform how they operate. However, managing and scaling cloud resources effectively can be a complex task. Scaling with Google Cloud Operations explores the fundamental concepts of modern operations, reliability, and resilience in the cloud, and how Google Cloud can help support these efforts. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

자세히 알아보기

As organizations move their data and applications to the cloud, they must address new security challenges. The Trust and Security with Google Cloud course explores the basics of cloud security, the value of Google Cloud's multilayered approach to infrastructure security, and how Google earns and maintains customer trust in the cloud. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

자세히 알아보기

Many traditional enterprises use legacy systems and applications that can't stay up-to-date with modern customer expectations. Business leaders often have to choose between maintaining their aging IT systems or investing in new products and services. "Modernize Infrastructure and Applications with Google Cloud" explores these challenges and offers solutions to overcome them by using cloud technology. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

자세히 알아보기

Artificial intelligence (AI) and machine learning (ML) represent an important evolution in information technologies that are quickly transforming a wide range of industries. “Innovating with Google Cloud Artificial Intelligence” explores how organizations can use AI and ML to transform their business processes. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

자세히 알아보기

Cloud technology can bring great value to an organization, and combining the power of cloud technology with data has the potential to unlock even more value and create new customer experiences. “Exploring Data Transformation with Google Cloud” explores the value data can bring to an organization and ways Google Cloud can make data useful and accessible. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

자세히 알아보기

There's much excitement about cloud technology and digital transformation, but often many unanswered questions. For example: What is cloud technology? What does digital transformation mean? How can cloud technology help your organization? Where do you even begin? If you've asked yourself any of these questions, you're in the right place. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey. If you want to learn about cloud technology so you can excel in your role and help build the future of your business, then this introductory course on digital transformation is for you. This course is part of the Cloud Digital Leader learning path.

자세히 알아보기

이 과정은 Transformer 아키텍처와 BERT(Bidirectional Encoder Representations from Transformers) 모델을 소개합니다. 셀프 어텐션 메커니즘 같은 Transformer 아키텍처의 주요 구성요소와 이 아키텍처가 BERT 모델 빌드에 사용되는 방식에 관해 알아봅니다. 또한 텍스트 분류, 질문 답변, 자연어 추론과 같이 BERT를 활용할 수 있는 다양한 작업에 대해서도 알아봅니다. 이 과정은 완료하는 데 대략 45분이 소요됩니다.

자세히 알아보기

이 과정은 기계 번역, 텍스트 요약, 질의 응답과 같은 시퀀스-투-시퀀스(Seq2Seq) 작업에 널리 사용되는 강력한 머신러닝 아키텍처인 인코더-디코더 아키텍처에 대한 개요를 제공합니다. 인코더-디코더 아키텍처의 기본 구성요소와 이러한 모델의 학습 및 서빙 방법에 대해 알아봅니다. 해당하는 실습 둘러보기에서는 TensorFlow에서 시를 짓는 인코더-디코더 아키텍처를 처음부터 간단하게 구현하는 코딩을 해봅니다.

자세히 알아보기

Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.

자세히 알아보기

Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.

자세히 알아보기

이 과정에서는 생성형 AI 모델과 상호작용하고 비즈니스 아이디어의 프로토타입을 제작하여 프로덕션으로 출시할 수 있는 도구인 Vertex AI Studio를 소개합니다. 몰입감 있는 사용 사례, 흥미로운 강의, 실무형 실습을 통해 프롬프트부터 프로덕션에 이르는 수명 주기를 살펴보고 Vertex AI Studio를 Gemini 멀티모달 애플리케이션, 프롬프트 설계, 프롬프트 엔지니어링, 모델 조정에 활용하는 방법을 알아봅니다. 이 과정의 목표는 Vertex AI Studio로 프로젝트에서 생성형 AI의 잠재력을 활용하는 것입니다.

자세히 알아보기

This course focuses on how you can bring your on-premises data lakes and workloads to Google Cloud to unlock cost savings and scale.

자세히 알아보기

Data Catalog is deprecated and will be discontinued on January 30, 2026. You can still complete this course if you want to. For steps to transition your Data Catalog users, workloads, and content to Dataplex Catalog, see Transition from Data Catalog to Dataplex Catalog (https://cloud.google.com/dataplex/docs/transition-to-dataplex-catalog). Data Catalog is a fully managed and scalable metadata management service that empowers organizations to quickly discover, understand, and manage all of their data. In this quest you will start small by learning how to search and tag data assets and metadata with Data Catalog. After learning how to build your own tag templates that map to BigQuery table data, you will learn how to build MySQL, PostgreSQL, and SQLServer to Data Catalog Connectors.

자세히 알아보기

Complete the introductory Get Started with Sensitive Data Protection skill badge to demonstrate skills in the following: using Sensitive Data Protection services (including the Cloud Data Loss Prevention API) to inspect, redact, and de-identify sensitive data in Google Cloud. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge course, and final assessment challenge lab, to receive a digital badge that you can share with your network.

자세히 알아보기

Earn a skill badge by completing the Secure BigLake Data quest, where you use IAM, BigQuery, BigLake, and Data Catalog within Dataplex to create and secure BigLake tables. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this Skill Badge, and the final assessment challenge lab, to receive a digital badge that you can share with your network.

자세히 알아보기

기업에서 인공지능과 머신러닝의 사용이 계속 증가함에 따라 책임감 있는 빌드의 중요성도 커지고 있습니다. 대부분의 기업은 책임감 있는 AI를 실천하기가 말처럼 쉽지 않습니다. 조직에서 책임감 있는 AI를 운영하는 방법에 관심이 있다면 이 과정이 도움이 될 것입니다. 이 과정에서 책임감 있는 AI를 위해 현재 Google Cloud가 기울이고 있는 노력, 권장사항, Google Cloud가 얻은 교훈을 알아보면 책임감 있는 AI 접근 방식을 구축하기 위한 프레임워크를 수립할 수 있을 것입니다.

자세히 알아보기

책임감 있는 AI란 무엇이고 이것이 왜 중요하며 Google에서는 어떻게 제품에 책임감 있는 AI를 구현하고 있는지 설명하는 입문용 마이크로 학습 과정입니다. Google의 7가지 AI 원칙도 소개합니다.

자세히 알아보기

A Business Leader in Generative AI can articulate the capabilities of core cloud Generative AI products and services and understand how they benefit organizations. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey and how they can leverage Google Cloud's generative AI products to overcome these challenges.

자세히 알아보기

초급 Dataplex로 데이터 메시 빌드하기 기술 배지 과정을 완료하여, Dataplex를 통해 데이터 메시를 빌드해 Google Cloud에서 데이터 보안, 거버넌스, 탐색을 활용하는 역량을 입증하세요. Dataplex에서 애셋에 태그를 지정하고, IAM 역할을 할당하고, 데이터 품질을 평가하는 기술을 연습하고 테스트할 수 있습니다. 기술 배지는 개인의 Google Cloud 제품 및 서비스 능력에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 기술 배지 과정을 통해 대화형 실습 환경에서 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크와 공유 가능한 디지털 배지를 받을 수 있습니다.

자세히 알아보기

초급 Dataplex 시작하기 기술 배지 과정을 완료하여 Dataplex 애셋 생성, 관점 유형 생성, Dataplex의 항목에 관점 적용과 관련된 기술 역량을 입증하세요.

자세히 알아보기

이 과정에서는 신경망이 입력 시퀀스의 특정 부분에 집중할 수 있도록 하는 강력한 기술인 주목 메커니즘을 소개합니다. 주목 메커니즘의 작동 방식과 이 메커니즘을 다양한 머신러닝 작업(기계 번역, 텍스트 요약, 질문 답변 등)의 성능을 개선하는 데 활용하는 방법을 알아봅니다.

자세히 알아보기