Lebohang Madiehe
Date d'abonnement : 2022
Ligue d'Argent
39275 points
Date d'abonnement : 2022
Terminez le cours intermédiaire Créer une infrastructure avec Terraform sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : les principes d'Infrastructure as Code (IaC) avec Terraform, le provisionnement et la gestion des ressources Google Cloud avec des configurations Terraform, la gestion efficace des états (local et distant) et la modularisation du code Terraform à des fins de réutilisabilité et d'organisation.
Suivez le cours Configurer un environnement de développement d'applications sur Google Cloud et obtenez un badge de compétence. Dans ce cours, vous apprendrez à créer et connecter une infrastructure cloud axée sur le stockage à l'aide des fonctionnalités de base des technologies suivantes Cloud Storage, Identity and Access Management, Cloud Functions et Pub/Sub.
Ce cours est une introduction à Terraform pour Google Cloud. Il permet aux participants de découvrir comment Terraform peut être utilisé pour implémenter une Infrastructure as Code, et comment appliquer certaines de ses fonctionnalités essentielles pour créer et gérer une infrastructure Google Cloud. Les participants mettront en pratique les connaissances qu'ils auront acquises en créant et en gérant des ressources Google Cloud à l'aide de Terraform.
Ce cours accéléré à la demande présente aux participants les services complets et flexibles d'infrastructure et de plate-forme offerts par Google Cloud, en s'intéressant plus particulièrement à Compute Engine. À travers un ensemble de cours vidéo, de démonstrations et d'ateliers pratiques, les participants découvrent et déploient des éléments de solution, y compris des composants d'infrastructure tels que des réseaux, des machines virtuelles et des services d'applications. Vous découvrirez comment utiliser Google Cloud via la console et Cloud Shell. Vous en apprendrez également plus sur le rôle d'un architecte cloud, sur les approches de la conception d'infrastructure et sur la configuration de réseaux virtuels avec Virtual Private Cloud (VPC), les projets, les réseaux, les sous-réseaux, les adresses IP, les routes et les règles de pare-feu.
Ce cours vous aide à préparer l'examen pour obtenir la certification Associate Cloud Engineer. Vous découvrirez les domaines Google Cloud abordés dans l'examen et verrez comment créer un plan de formation pour améliorer vos connaissances de ces domaines.
This course helps learners prepare to study for the Professional Google Workspace Administrator Certification exam. Learners will be exposed to and engage with exam topics through a series of readings, diagnostic questions, and knowledge checks. After completing this course, learners will have a personalized workbook that will guide them through the rest of their certification readiness journey.
Earn a skill badge by completing the Configure your Workplace: Google Workspace for IT Admins quest, where you will get try out the Admin role for Workspace and learn to provision Groups, manage applications, security, and manage Meet. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge quest, and final assessment challenge lab, to receive a digital badge that you can share with your network.
Dans ce cours, nous définirons ce qu'est le machine learning et ce qu'il peut apporter à votre entreprise. Vous verrez quelques démonstrations de l'utilisation du ML et découvrirez ses termes clés, comme instances, caractéristiques et étiquettes. Lors des ateliers interactifs, vous vous entraînerez à appeler les API de ML préentrainées disponibles et à construire vos propres modèles de machine learning en utilisant simplement SQL avec BigQuery ML.
Le troisième cours de cette série s'intitule "Achieving Advanced Insights with BigQuery". Notre objectif est ici d'approfondir vos connaissances en SQL en abordant en détail les fonctions avancées et en vous apprenant à décomposer les requêtes complexes en étapes faciles à gérer. Nous allons étudier l'architecture interne de BigQuery (stockage segmenté basé sur des colonnes), ainsi que des concepts SQL avancés tels que les champs imbriqués et répétés, en utilisant pour cela des objets ARRAY et STRUCT. Pour finir, nous verrons comment optimiser les performances de vos requêtes et sécuriser vos données à l'aide des vues autorisées.Une fois que vous aurez terminé ce cours, inscrivez-vous au cours "Applying Machine Learning to Your Data with Google Cloud".
Ceci est le deuxième cours de la série "Data to Insights". Ici, nous verrons comment ingérer de nouveaux ensembles de données externes dans BigQuery et les visualiser avec Looker Studio. Nous aborderons également des concepts SQL intermédiaires, tels que les jointures et les unions de plusieurs tables, qui vous permettront d'analyser les données de différentes sources. Remarque : Même si vous avez des connaissances en SQL, certaines spécificités de BigQuery (comme la gestion du cache de requêtes et des caractères génériques de table) peuvent ne pas vous être familières.Une fois que vous aurez terminé ce cours, inscrivez-vous au cours "Achieving Advanced Insights with BigQuery".
This workload aims to upskill Google Cloud partners to perform specific tasks for modernization using LookML on BigQuery. A proof-of-concept will take learners through the process of creating LookML visualizations on BigQuery. During this course, learners will be guided specifically on how to write Looker modeling language, also known as LookML and create semantic data models, and learn how LookML constructs SQL queries against BigQuery. At a high level, this course will focus on basic LookML to create and access BigQuery objects, and optimize BigQuery objects with LookML.
Les organisations de toutes tailles exploitent le potentiel et la flexibilité du cloud afin de transformer leurs opérations. Toutefois, la gestion et le scaling des ressources cloud peuvent s'avérer complexes. "Scaling avec la suite Google Cloud Operations" présente les concepts fondamentaux des opérations modernes, de la fiabilité et de la résilience dans le cloud, ainsi que la manière dont Google Cloud peut vous aider à atteindre ces objectifs. Ce cours fait partie du parcours de formation Cloud Digital Leader. Il vise à aider les participants à évoluer dans leur poste et à bâtir l'avenir de leur entreprise.
De nombreuses entreprises traditionnelles utilisent d'anciens systèmes et d'anciennes applications qui ne peuvent plus satisfaire les attentes des clients d'aujourd'hui. Les chefs d'entreprise doivent régulièrement choisir entre deux options : entretenir leurs systèmes informatiques vieillissants ou investir dans de nouveaux produits et services. Le cours "Moderniser l'infrastructure et les applications avec Google Cloud" aborde ces problématiques et propose des solutions pour les résoudre à l'aide de la technologie cloud. Ce cours fait partie du parcours de formation Cloud Digital Leader. Il vise à aider les participants à évoluer dans leur poste et à bâtir l'avenir de leur entreprise.
La technologie cloud est une grande source de valeur pour les entreprises. En combinant le potentiel de cette technologie avec celui des données, il est possible de créer encore plus de valeur et d'offrir de nouvelles expériences client. "Explorer la transformation des données avec Google Cloud" vous fait découvrir la valeur que les données peuvent apporter à une entreprise et les façons dont Google Cloud peut les rendre utiles et accessibles. Ce cours fait partie du parcours de formation Cloud Digital Leader. Il a pour but d'aider les participants à évoluer dans leur poste et à façonner l'avenir de leur entreprise.
La technologie cloud et la transformation numérique suscitent beaucoup d'enthousiasme, mais elles génèrent aussi souvent beaucoup de questions laissées sans réponse. Par exemple : Qu'est-ce que la technologie cloud ? Qu'entend-on par transformation numérique ? Que peut vous apporter la technologie cloud ? Et par où commencer ? Si vous vous êtes déjà posé une de ces questions, vous êtes au bon endroit. Ce cours offre un aperçu des opportunités et des défis que les entreprises peuvent rencontrer lors de leur transformation numérique. Si vous souhaitez découvrir les technologies cloud afin de pouvoir exceller dans votre rôle et contribuer à bâtir l'avenir de votre entreprise, ce cours d'introduction sur la transformation numérique est pour vous. Il fait partie du parcours de formation Cloud Digital Leader.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA générative, décrit à quoi elle sert et souligne ce qui la distingue des méthodes de machine learning traditionnel. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.
"Planning for a Google Workspace Deployment" est le dernier cours de la série "Google Workspace Administration". Dans ce cours, vous découvrirez la méthodologie et les bonnes pratiques de déploiement de Google. Vous suivrez Katelyn et Marcus lors de la planification du déploiement de Google Workspace chez Cymbal. Ils se concentreront sur les principaux aspects techniques du projet, à savoir le provisionnement, la distribution des e-mails, la migration des données et la coexistence, et identifieront la meilleure stratégie de déploiement pour chaque aspect. Vous verrez également toute l'importance de la gestion du changement lors du déploiement de Google Workspace, afin de s'assurer que les utilisateurs bénéficient d'une transition fluide vers Google Workspace et profitent des avantages de ce changement grâce à des communications, une assistance et des formations. Ce cours aborde des sujets théoriques et ne contient aucun exercice pratique. Si ce n'est pas déjà fait, veuillez annuler…
Ce cours apporte aux participants des compétences de gouvernance des données dans leur environnement Google Workspace. Les participants étudieront l'utilisation de règles de protection contre la perte de données dans Gmail et Drive afin de prévenir les fuites de données. Ils apprendront ensuite à utiliser Google Vault pour la conservation et la récupération des données. Ils découvriront ensuite comment configurer les régions de données et les paramètres d'exportation afin de se conformer à la réglementation. Enfin, ils verront comment classifier les données à l'aide d'étiquettes pour améliorer l'organisation et renforcer la sécurité.
Ce cours apprend aux participants à sécuriser leur environnement Google Workspace. Les participants mettront en place des règles de mot de passe sécurisées ainsi que la validation en deux étapes pour gérer l'accès des utilisateurs. Ils utiliseront ensuite l'outil d'investigation de sécurité afin d'identifier et de résoudre les problèmes de sécurité de manière proactive. Ensuite, ils géreront l'accès aux applications tierces et les appareils mobiles afin d'assurer la sécurité. Pour finir, les participants appliqueront les mesures de sécurité des e-mails et de conformité pour protéger les données organisationnelles.
Ce cours a été conçu pour présenter en détail les services principaux de Google Workspace. Les participants y apprendront à activer, désactiver et configurer les paramètres de ces services, dont Gmail, Agenda, Drive, Meet, Chat et Docs. Ensuite, ils découvriront comment déployer et gérer Gemini dans l'intérêt de leurs utilisateurs. Enfin, les participants examineront des cas d'utilisation d'AppSheet et d'Apps Script pour apprendre à automatiser des tâches et étendre les fonctionnalités des applications Google Workspace.
Ce cours a été conçu pour présenter la gestion des ressources et des utilisateurs dans Google Workspace. Les participants y apprendront à configurer des unités organisationnelles pour répondre aux besoins de leur organisation, et à gérer différents types de groupes Google. Ils développeront également une expertise dans la gestion des paramètres de domaine dans Google Workspace. Pour finir, ils apprendront à maîtriser l'optimisation et la structuration des ressources dans leur environnement Google Workspace.
"Concepts fondamentaux de Google Cloud : infrastructure de base" présente les concepts et les termes à connaître pour utiliser Google Cloud. À travers des vidéos et des ateliers pratiques, il décrit et compare la plupart des services Google Cloud de calcul et de stockage, ainsi que des outils importants de gestion des ressources et des règles.
Terminez le cours d'introduction Préparer des données pour les API de ML sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : le nettoyage des données avec Dataprep by Trifacta, l'exécution de pipelines de données dans Dataflow, la création de clusters et l'exécution de jobs Apache Spark dans Dataproc, et l'appel d'API de ML comme l'API Cloud Natural Language, l'API Google Cloud Speech-to-Text et l'API Video Intelligence. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.
Dans ce deuxième volet de la série de cours sur Dataflow, nous allons nous intéresser de plus près au développement de pipelines à l'aide du SDK Beam. Nous allons commencer par passer en revue les concepts d'Apache Beam. Nous allons ensuite parler du traitement des données par flux à l'aide de fenêtres, de filigranes et de déclencheurs. Nous passerons ensuite aux options de sources et de récepteurs dans vos pipelines, aux schémas pour présenter vos données structurées, et nous verrons comment effectuer des transformations avec état à l'aide des API State et Timer. Nous aborderons ensuite les bonnes pratiques qui vous aideront à maximiser les performances de vos pipelines. Vers la fin du cours, nous présentons le langage SQL et les DataFrames pour représenter votre logique métier dans Beam, et nous expliquons comment développer des pipelines de manière itérative à l'aide des notebooks Beam.
Terminez le cours intermédiaire Ingénierie des données pour la modélisation prédictive avec BigQuery ML pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création de pipelines de transformation des données dans BigQuery avec Dataprep by Trifacta ; l'utilisation de Cloud Storage, Dataflow et BigQuery pour créer des workflows ETL (Extract, Transform and Load) ; et la création de modèles de machine learning avec BigQuery ML.
Dans le dernier volet de la série de cours sur Dataflow, nous allons présenter les composants du modèle opérationnel de Dataflow. Nous examinerons les outils et techniques permettant de résoudre les problèmes et d'optimiser les performances des pipelines. Nous passerons ensuite en revue les bonnes pratiques en matière de test, de déploiement et de fiabilité pour les pipelines Dataflow. Nous terminerons par une présentation des modèles, qui permettent de faire évoluer facilement les pipelines Dataflow pour les adapter aux organisations comptant des centaines d'utilisateurs. Ces leçons vous aideront à vous assurer que votre plate-forme de données est stable et résiliente face aux imprévus.
Ce cours est le premier d'une série en trois volets sur le traitement des données sans serveur avec Dataflow. Dans ce premier cours, nous allons commencer par rappeler ce qu'est Apache Beam et sa relation avec Dataflow. Ensuite, nous aborderons la vision d'Apache Beam et les avantages de son framework de portabilité, qui permet aux développeurs d'utiliser le langage de programmation et le backend d'exécution de leur choix. Nous vous montrerons aussi comment séparer le calcul du stockage et économiser de l'argent grâce à Dataflow, puis nous examinerons les interactions entre les outils de gestion de l'identification et des accès avec vos pipelines Dataflow. Enfin, nous verrons comment implémenter le modèle de sécurité adapté à votre cas d'utilisation sur Dataflow.
Les pipelines de données s'inscrivent généralement dans l'un des paradigmes EL (extraction et chargement), ELT (extraction, chargement et transformation) ou ETL (extraction, transformation et chargement). Ce cours indique quel paradigme utiliser pour le traitement de données par lot en fonction du contexte. Il présente également plusieurs technologies Google Cloud de transformation des données, y compris BigQuery, l'exécution de Spark sur Dataproc, les graphiques de pipelines dans Cloud Data Fusion et le traitement des données sans serveur avec Dataflow. Les participants mettront en pratique les connaissances qu'ils auront acquises en créant des composants de pipelines de données sur Google Cloud à l'aide de Qwiklabs.
Intégrer le machine learning à des pipelines de données renforce la capacité à dégager des insights des données. Ce cours passera en revue plusieurs façons d'intégrer le machine learning à des pipelines de données sur Google Cloud. Vous découvrirez AutoML pour les cas ne nécessitant que peu de personnalisation (voire aucune), ainsi que Notebooks et BigQuery ML pour les situations qui requièrent des capacités de machine learning plus adaptées. Enfin, vous apprendrez à utiliser des solutions de machine learning en production avec Vertex AI.
Le traitement de flux de données est une pratique de plus en plus courante, car elle permet aux entreprises d'obtenir des métriques sur leurs activités commerciales en temps réel. Ce cours explique comment créer des pipelines de flux de données sur Google Cloud et présente Pub/Sub, une solution qui permet de gérer des données de flux entrants. Par ailleurs, vous verrez comment appliquer des agrégations et des transformations à des flux de données à l'aide de Dataflow, mais aussi comment stocker des enregistrements traités dans BigQuery ou Bigtable pour qu'ils puissent être analysés. Les participants mettront en pratique les connaissances qu'ils auront acquises en créant des composants de pipelines de flux de données sur Google Cloud à l'aide de Qwiklabs.
Les lacs de données et les entrepôts de données sont les deux principaux composants des pipelines de données. Ce cours présente des cas d'utilisation de chaque type de stockage, ainsi que les détails techniques des solutions de lacs et d'entrepôts de données disponibles sur Google Cloud. Il décrit également le rôle des ingénieurs de données et les avantages d'un pipeline de données réussi sur les opérations commerciales, avant d'expliquer pourquoi il est important de procéder à l'ingénierie des données dans un environnement cloud. Il s'agit du premier cours de la série "Ingénierie des données sur Google Cloud". Après l'avoir terminé, inscrivez-vous au cours "Créer des pipelines de données en batch sur Google Cloud".
Terminez le cours d'introduction Implémenter l'équilibrage de charge sur Compute Engine pour recevoir un badge démontrant vos compétences dans les domaines suivants : l'écriture de commandes gcloud et l'utilisation de Cloud Shell, la création et le déploiement de machines virtuelles dans Compute Engine, ainsi que la configuration d'équilibreurs de charge réseau et HTTP. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.
Ce cours présente les produits et services Google Cloud pour le big data et le machine learning compatibles avec le cycle de vie "des données à l'IA". Il explore les processus, défis et avantages liés à la création d'un pipeline de big data et de modèles de machine learning avec Vertex AI sur Google Cloud.