Abdi Lawrence
Mitglied seit 2023
Silver League
5300 Punkte
Mitglied seit 2023
Complete the intermediate Manage Data Models in Looker skill badge to demonstrate skills in the following: maintaining LookML project health; utilizing SQL runner for data validation; employing LookML best practices; optimizing queries and reports for performance; and implementing persistent derived tables and caching policies. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course, and the final assessment challenge lab, to receive a digital badge that you can share with your network.
Complete the introductory Build LookML Objects in Looker skill badge to demonstrate skills in the following: building new dimensions and measures, views, and derived tables; setting measure filters and types based on requirements; updating dimensions and measures; building and refining Explores; joining views to existing Explores; and deciding which LookML objects to create based on business requirements.
MMit dem Skill-Logo zum Kurs Daten für Looker-Dashboards und ‑Berichte vorbereiten weisen Sie Grundkenntnisse in folgenden Bereichen nach: Filtern, Sortieren und Pivotieren von Daten, Zusammenführen der Ergebnisse von verschiedenen Looker-Explores sowie Verwenden von Funktionen und Operatoren zum Erstellen von Looker-Dashboards und ‑Berichten für Analyse und Visualisierung von Daten. Ein Skill-Logo ist ein exklusives digitales Abzeichen, das von Google Cloud ausgestellt wird und Ihre Kenntnisse über unsere Produkte und Dienste belegt. In diesem Zusammenhang wird auch die Fähigkeit bewertet, wie Sie Ihr Wissen in einer interaktiven praxisnahen Umgebung anwenden. Absolvieren Sie diese Skill-Logo-Aufgabenreihe und die Challenge-Lab-Prüfung, um ein Skill-Logo zu erhalten, das Sie in Ihrem Netzwerk posten können.
Data pipelines typically fall under one of the Extract and Load (EL), Extract, Load and Transform (ELT) or Extract, Transform and Load (ETL) paradigms. This course describes which paradigm should be used and when for batch data. Furthermore, this course covers several technologies on Google Cloud for data transformation including BigQuery, executing Spark on Dataproc, pipeline graphs in Cloud Data Fusion and serverless data processing with Dataflow. Learners get hands-on experience building data pipeline components on Google Cloud using Qwiklabs.
The two key components of any data pipeline are data lakes and warehouses. This course highlights use-cases for each type of storage and dives into the available data lake and warehouse solutions on Google Cloud in technical detail. Also, this course describes the role of a data engineer, the benefits of a successful data pipeline to business operations, and examines why data engineering should be done in a cloud environment. This is the first course of the Data Engineering on Google Cloud series. After completing this course, enroll in the Building Batch Data Pipelines on Google Cloud course.