Rejoindre Se connecter

ramaiah guggilla

Date d'abonnement : 2024

Ligue d'Argent

39650 points
Présentation de l'IA et du machine learning sur Google Cloud Earned fév. 23, 2025 EST
Infrastructure Google Cloud fiable : conception et processus Earned jan. 16, 2025 EST
Développer une culture de l'ingénierie SRE façon Google Earned déc. 27, 2024 EST
Concepts fondamentaux de Google Cloud : infrastructure de base Earned déc. 26, 2024 EST
Preparing for Your Professional Cloud Security Engineer Journey Earned déc. 26, 2024 EST
Moderniser des lacs de données et des entrepôts de données avec Google Cloud Earned déc. 22, 2024 EST
Introduction à l'ingénierie des données sur Google Cloud Earned déc. 20, 2024 EST
Se préparer à devenir Professional Data Engineer Earned déc. 18, 2024 EST
DEPRECATED Google Cloud Solutions II: Data and Machine Learning Earned déc. 18, 2024 EST
Configurer un réseau Google Cloud Earned déc. 16, 2024 EST
Integrate Vertex AI Search and Conversation into Voice and Chat Apps Earned déc. 8, 2024 EST
How Google Does Machine Learning - Français Earned oct. 2, 2024 EDT
Google Cloud Big Data and Machine Learning Fundamentals - Français Earned sept. 18, 2024 EDT
Preparing for your Professional Cloud Architect Journey Earned juin 19, 2024 EDT

Ce cours présente les solutions d'IA et de machine learning (ML) de Google Cloud permettant de développer des projets d'IA prédictive et générative. Il décrit les technologies, produits et outils disponibles tout au long du cycle de vie des données à l'IA, en englobant les éléments de base, le développement et les solutions d'IA. Son but est d'aider les data scientists, les développeurs d'IA et les ingénieurs en ML à améliorer leurs compétences et connaissances par le biais d'expériences d'apprentissage captivantes et d'exercices pratiques.

En savoir plus

Ce cours permet aux participants d'apprendre à créer des solutions hautement fiables et efficaces sur Google Cloud en s'appuyant sur des modèles de conception éprouvés. Il s'inscrit dans la continuité des cours "Concevoir une architecture avec Google Compute Engine" et "Concevoir une architecture avec Google Kubernetes Engine" et demande une expérience pratique des technologies abordées dans chaque cours. À travers un ensemble de présentations, d'activités de conception et d'ateliers pratiques, les participants apprennent à définir des exigences techniques et commerciales, et à trouver un équilibre entre elles pour concevoir des déploiements Google Cloud hautement fiables et disponibles, sécurisés et économes.

En savoir plus

Dans bien des services informatiques, il existe des divergences entre les avantages souhaités par les développeurs, à savoir l'agilité, et ceux des opérateurs, qui recherchent la stabilité. L'ingénierie de la fiabilité des sites (SRE) permet à Google d'aligner les mesures incitatives entre le développement et les opérations, et de proposer une assistance à la production critique. Adopter des pratiques techniques et culturelles de l'ingénierie SRE permet d'améliorer la collaboration entre les équipes métiers et informatiques. Ce cours présente les pratiques clés de l'ingénierie SRE façon Google, ainsi que le rôle déterminant que jouent les responsables IT et les chefs d'entreprise dans la réussite de son adoption au sein de leur organisation.

En savoir plus

"Concepts fondamentaux de Google Cloud : infrastructure de base" présente les concepts et les termes à connaître pour utiliser Google Cloud. À travers des vidéos et des ateliers pratiques, il décrit et compare la plupart des services Google Cloud de calcul et de stockage, ainsi que des outils importants de gestion des ressources et des règles.

En savoir plus

This course helps learners prepare for the Professional Cloud Security Engineer (PCSE) Certification exam. Learners will be exposed to and engage with exam topics through a series of lectures, diagnostic questions, and knowledge checks. After completing this course, learners will have a personalized workbook that will guide them through the rest of their certification readiness journey.

En savoir plus

Les lacs de données et les entrepôts de données sont les deux principaux composants des pipelines de données. Ce cours présente des cas d'utilisation de chaque type de stockage, ainsi que les détails techniques des solutions de lacs et d'entrepôts de données disponibles sur Google Cloud. Il décrit également le rôle des ingénieurs de données et les avantages d'un pipeline de données réussi sur les opérations commerciales, avant d'expliquer pourquoi il est important de procéder à l'ingénierie des données dans un environnement cloud. Il s'agit du premier cours de la série "Ingénierie des données sur Google Cloud". Après l'avoir terminé, inscrivez-vous au cours "Créer des pipelines de données en batch sur Google Cloud".

En savoir plus

Dans ce cours, vous allez explorer l'ingénierie de données sur Google Cloud, les rôles et responsabilités des ingénieurs de données, et la façon dont ces éléments se retrouvent dans les offres Google Cloud. Vous apprendrez également à relever les défis liés à l'ingénierie de données.

En savoir plus

Ce cours a pour objectif d'aider les participants à créer un plan de formation pour l'examen de certification Professional Data Engineer. Les participants découvriront l'étendue et le champ d'application des domaines abordés lors de l'examen, puis évalueront leur niveau de préparation à l'examen et créeront leur propre plan de formation.

En savoir plus

In this advanced-level quest, you will learn how to harness serious Google Cloud computing power to run big data and machine learning jobs. The hands-on labs will give you use cases, and you will be tasked with implementing big data and machine learning practices utilized by Google’s very own Solutions Architecture team. From running Big Query analytics on tens of thousands of basketball games, to training TensorFlow image classifiers, you will quickly see why Google Cloud is the go-to platform for running big data and machine learning jobs.

En savoir plus

Suivez le cours Configurer un réseau Google Cloud et obtenez un badge de compétence. Vous allez apprendre à effectuer des tâches élémentaires de gestion de réseaux sur Google Cloud Platform : créer un réseau personnalisé, ajouter des règles de pare-feu de sous-réseau, puis créer des VM et tester la latence lorsqu'elles communiquent entre elles.

En savoir plus

This course on Integrate Vertex AI Search and Conversation into Voice and Chat Apps is composed of a set of labs to give you a hands on experience to interacting with new Generative AI technologies. You will learn how to create end-to-end search and conversational experiences by following examples. These technologies complement predefined intent-based chat experiences created in Dialogflow with LLM-based, generative answers that can be based on your own data. Also, they allow you to porvide enterprise-grade search experiences for internal and external websites to search documents, structure data and public websites.

En savoir plus

Quelles sont les bonnes pratiques pour implémenter le machine learning sur Google Cloud ? En quoi consiste la plate-forme Vertex AI et comment pouvez-vous l'utiliser pour créer, entraîner et déployer rapidement des modèles de machine learning AutoML sans écrire une seule ligne de code ? Qu'est-ce que le machine learning et quels types de problèmes permet-il de résoudre ? Google aborde le machine learning d'une façon particulière, qui consiste à fournir une plate-forme unifiée pour les ensembles de données gérés, ainsi qu'un magasin de caractéristiques et un moyen de créer, d'entraîner et de déployer des modèles de machine learning sans écrire une seule ligne de code. Il s'agit également de permettre aux utilisateurs d'étiqueter les données et de créer des notebooks Workbench à l'aide de frameworks tels que TensorFlow, Scikit Learn, Pytorch et R. Avec notre plate-forme Vertex AI, il est également possible d'entraîner des modèles personnalisés, de créer des pipelines de composants, …

En savoir plus

Ce cours présente les produits et services Google Cloud pour le big data et le machine learning compatibles avec le cycle de vie "des données à l'IA". Il explore les processus, défis et avantages liés à la création d'un pipeline de big data et de modèles de machine learning avec Vertex AI sur Google Cloud.

En savoir plus

This course helps learners create a study plan for the PCA (Professional Cloud Architect) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

En savoir plus