Sonal Awate
成为会员时间:2022
钻石联赛
39008 积分
成为会员时间:2022
如果您是一位入门级云开发者, 在学习了“Google Cloud 基础知识”课程之后,想要寻求真正的实操机会,这门课程就是您的不二之选。您将获得宝贵的实操经验, 通过多个实验深入探索 Cloud Storage 以及 Monitoring 和 Cloud Functions 等其他关键应用服务。您将掌握一系列宝贵技能, 在 Google Cloud 的任何计划中,这些技能都能发挥作用。
This course explores how to implement a streaming analytics solution using Pub/Sub.
This course continues to explore the implementation of data load and transformation pipelines for a BigQuery Data Warehouse using Cloud Data Fusion.
Welcome to Migrate Workflows, where we discuss how to migrate Spark and Hadoop tasks and workflows to Google Cloud.
Initial deployment of Vertex AI Search and Google Agentspace apps takes only a few clicks, but getting the configurations right can elevate a deployment from a basic off-the-shelf app to an excellent custom search or recommendations experience. In this course, you'll learn more about the many ways you can customize and improve search, recommendations, and Google Agentspace apps.
AI Applications provides built-in analytics for your Vertex AI Search and Google Agentspace apps. Learn what metrics are tracked and how to view them in this course.
This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.
With Google Docs, your documents are stored in the cloud, and you can access them from any computer or device. You create and edit documents right in your web browser; no special software is required. Even better, multiple people can work at the same time, you can see people’s changes as they make them, and every change is saved automatically. In this course, you will learn how to open Google Docs, create and format a new document, and apply a template to a new document. You will learn how to enhance your documents using a table of contents, headers and footers, tables, drawings, images, and more. You will learn how to share your documents with others. We will discuss your sharing options and examine collaborator roles and permissions. You will learn how to manage versions of your documents. Google Docs allows you to work in real time with others on the same document. You will learn how to create and manage comments and action items in your documents. We will review a few of the G…
In this course, we introduce you to Google Chat, Google’s chat software included with Google Workspace. You will learn about messaging individuals and groups in Google Chat. You will also discover customization options, collaboration features and how Google Chat integrates with other Google Workspace products. We will explore the use of spaces in Google Chat, showing you how to create, manage, search, and join them. Additionally, you will understand the distinctions between using a space and a group chat. You also explore Google Chat apps and learn how to search for and use apps within Google Chat. Aside from course videos, you will complete hands-on activities to practice what you’ve learned. Consider inviting a colleague or two to interact with you in Google Chat as you complete the activities.
Migration from Oracle to Cloud Spanner using HarbourBridge. This course describes an example scenario that uses sample data during the migration. This process includes using HarbourBridge for Assessment, Schema Conversion, Schema Transformation, Data Migration, and supporting tools for data validation.
This workload aims to upskill Google Cloud partners to perform specific tasks associated with priority workloads. Learners will perform the tasks of migrating data from Oracle to Cloud SQL using the Ora2Pg. An example scenario using sample data will be used to demonstrate the migration. Learners will complete an assessment quiz that focuses on the process of transferring schema, data and related processes to corresponding Google Cloud products.
This course equips learners with skills to govern data within their Google Workspace environment. Learners will explore data loss prevention rules in Gmail and Drive to prevent data leakage. They will then learn how to use Google Vault for data retention, preservation, and retrieval purposes. Next, they will learn how to configure data regions and export settings to align with regulations. Finally, learners will discover how to classify data using labels for enhanced organization and security.
Moving to the cloud creates numerous opportunities to start working in a new way and it empowers the workforce to better collaborate and innovate. But it’s also a big change. Sometimes the success of the change hinges not on the change itself, but on how it’s managed. This course will help people managers to understand some of the key challenges associated with cloud adoption, and provide them with a verified in-the-field framework that will assist them in supporting their teams on the change journey. By addressing the human factor of moving to the cloud, organizations increase their chances of realizing business objectives and investing in their future talent.
这是一节入门级微学习课程,探讨什么是大型语言模型 (LLM)、适合的应用场景以及如何使用提示调整来提升 LLM 性能,还介绍了可以帮助您开发自己的 Gen AI 应用的各种 Google 工具。
这是一节入门级微课程,旨在解释什么是负责任的 AI、它的重要性,以及 Google 如何在自己的产品中实现负责任的 AI。此外,本课程还介绍了 Google 的 7 个 AI 开发原则。
Migration from MySQL to Cloud Spanner using Dataflow that includes sample mock data and all necessary steps with initial assessment to validation including taking care of migrating users and grants.
This workload aims to upskill Google Cloud partners to perform specific tasks associated with priority workloads. Learners will perform the tasks of migrating data from five products hosted on Cloudera or Hortonworks to corresponding Google Cloud services and hosted products. The migration solutions addressed will be: HDFS data to Google Cloud Dataproc and Cloud Storage Hive data to Cloud Dataproc and the Cloud Dataproc Metastore Hive data to Google Cloud BigQuery Impala data to Google Cloud BigQuery HBase to Google Cloud Bigtable Sample data will be used during all five migrations. Learners will complete several labs that focus on the process of transferring schema, data and related processes to corresponding Google Cloud products.There will be one or more challenge labs that will test the learners understanding of the topics.
This workload aims to upskill Google Cloud partners to perform specific tasks for modernization using LookML on BigQuery. A proof-of-concept will take learners through the process of creating LookML visualizations on BigQuery. During this course, learners will be guided specifically on how to write Looker modeling language, also known as LookML and create semantic data models, and learn how LookML constructs SQL queries against BigQuery. At a high level, this course will focus on basic LookML to create and access BigQuery objects, and optimize BigQuery objects with LookML.
Actifio GO for Google Cloud is a SaaS offering which enables powerful enterprise class backup and recovery for Google Cloud resident and on-premises workloads. Actifio now supports backup, disaster recovery and rapid database cloning of Oracle on Bare Metal Solution on Google Cloud besides other enterprise workloads including SAP HANA, SQL Server, and others. This course provides a deep dive into at the preparation and deployment of the Actifio GO solution and its constituent components. Each module contains demos and explanations of each component. The Actifio GO training was originally designed for and only made available to Google Teams, however we’ve recognized how beneficial it would be for our Partners and are now offering our Partners exclusive access to the Actifio training and products, so they can benefit from the demos and best practices and bring them to their Google Cloud Customers.
This workload aims to upskill Google Cloud partners to perform specific tasks associated with priority workloads. Learners will perform the tasks of migrating data from PostgreSQL to CloudSQL using the Database Migration Service.
This course aims to upskill Google Cloud partners to perform specific tasks of migrating data from Microsoft SQL Server to CloudSQL using the built-in replication capabilities of SQL Server. Sample data will be used during the migration. Learners will complete several labs that focus on the process of transferring schema, data, and related processes to corresponding Google Cloud products. One or more challenge labs will test the learner's understanding of the topics.
Migration from MySQL to Cloud SQL using Database Migration Service that includes sample mock data and all necessary steps with initial assessment to validation including taking care of migrating users and grants.
This course discusses the key elements of Google's Data Warehouse solution portfolio and strategy.
Gmail is Google’s cloud based email service that allows you to access your messages from any computer or device with just a web browser. In this course, you’ll learn how to compose, send and reply to messages. You will also explore some of the common actions that can be applied to a Gmail message, and learn how to organize your mail using Gmail labels. You will explore some common Gmail settings and features. For example, you will learn how to manage your own personal contacts and groups, customize your Gmail Inbox to suit your way of working, and create your own email signatures and templates. Google is famous for search. Gmail also includes powerful search and filtering. You will explore Gmail’s advanced search and learn how to filter messages automatically.
Planning for a Google Workspace Deployment is the final course in the Google Workspace Administration series. In this course, you will be introduced to Google's deployment methodology and best practices. You will follow Katelyn and Marcus as they plan for a Google Workspace deployment at Cymbal. They'll focus on the core technical project areas of provisioning, mail flow, data migration, and coexistence, and will consider the best deployment strategy for each area. You will also be introduced to the importance of Change Management in a Google Workspace deployment, ensuring that users make a smooth transition to Google Workspace and gain the benefits of work transformation through communications, support, and training. This course covers theoretical topics, and does not have any hands on exercises. If you haven’t already done so, please cancel your Google Workspace trial now to avoid any unwanted charges.
本课程向您介绍 Transformer 架构和 Bidirectional Encoder Representations from Transformers (BERT) 模型。您将了解 Transformer 架构的主要组成部分,例如自注意力机制,以及该架构如何用于构建 BERT 模型。您还将了解可以使用 BERT 的不同任务,例如文本分类、问答和自然语言推理。完成本课程估计需要大约 45 分钟。
本课程简要介绍了编码器-解码器架构,这是一种功能强大且常见的机器学习架构,适用于机器翻译、文本摘要和问答等 sequence-to-sequence 任务。您将了解编码器-解码器架构的主要组成部分,以及如何训练和部署这些模型。在相应的实验演示中,您将在 TensorFlow 中从头编写简单的编码器-解码器架构实现代码,以用于诗歌生成。
本课程将向您介绍注意力机制,这是一种强大的技术,可令神经网络专注于输入序列的特定部分。您将了解注意力的工作原理,以及如何使用它来提高各种机器学习任务的性能,包括机器翻译、文本摘要和问题解答。
This course aims to introduce you to the basic concepts of Git: what it is and how it's used in Looker. You will also develop an in-depth knowledge of the caching process on the Looker platform, such as why they are used and why they work
This course provides an iterative approach to plan, build, launch, and grow a modern, scalable, mature analytics ecosystem and data culture in an organization that consistently achieves established business outcomes. Users will also learn how to design and build a useful, easy-to-use dashboard in Looker. It assumes experience with everything covered in our Getting Started with Looker and Building Reports in Looker courses.
By the end of this course, you should be able to articulate Looker's value propositions and what makes it different from other analytics tools in the market. You should also be able to explain how Looker works, and explain the standard components of successful service delivery.
This course provides an introduction to databases and summarized the differences in the main database technologies. This course will also introduce you to Looker and how Looker scales as a modern data platform. In the lessons, you will build and maintain standard Looker data models and establish the foundation necessary to learn Looker's more advanced features.
The two key components of any data pipeline are data lakes and warehouses. This course highlights use-cases for each type of storage and dives into the available data lake and warehouse solutions on Google Cloud in technical detail. Also, this course describes the role of a data engineer, the benefits of a successful data pipeline to business operations, and examines why data engineering should be done in a cloud environment. This is the first course of the Data Engineering on Google Cloud series. After completing this course, enroll in the Building Batch Data Pipelines on Google Cloud course.