가입 로그인

Naveen Chandragiri Poornachandra

회원 가입일: 2022

골드 리그

38965포인트
Orchestrate LLM solutions with LangChain Earned 12월 19, 2024 EST
Search with AI Applications Earned 12월 11, 2024 EST
Custom Search with Embeddings in Vertex AI Earned 12월 4, 2024 EST
벡터 검색 및 임베딩 Earned 12월 3, 2024 EST
Orchestrating Gen AI Applications with LangChain Earned 12월 1, 2024 EST
Security Best Practices in Google Cloud Earned 11월 27, 2024 EST
유연한 Google Cloud 인프라: 확장 및 자동화 Earned 11월 25, 2024 EST
필수 Google Cloud 인프라: 핵심 서비스 Earned 11월 23, 2024 EST
책임감 있는 AI 소개 Earned 11월 21, 2024 EST
Generative AI Fundamentals Earned 11월 21, 2024 EST
신뢰할 수 있는 Google Cloud 인프라: 설계 및 프로세스 Earned 11월 20, 2024 EST
Google Cloud에서 Terraform으로 인프라 빌드 Earned 11월 16, 2024 EST
Google Cloud 네트워크 설정 Earned 11월 16, 2024 EST
Preparing for your Professional Cloud Architect Journey Earned 11월 15, 2024 EST
Google Cloud 네트워크 개발 Earned 11월 15, 2024 EST
Vertex AI Studio 소개 Earned 11월 12, 2024 EST
Build Custom Processors with Document AI Earned 11월 12, 2024 EST
Document AI: Building a Custom Document Extractor Earned 11월 11, 2024 EST
Gemini 멀티모달 및 멀티모달 RAG로 리치 문서 검사하기 Earned 11월 10, 2024 EST
Data Warehousing for Partners: Analyze Data with Looker Earned 11월 10, 2024 EST
Build and Deploy a Generative AI solution using a RAG framework Earned 10월 11, 2024 EDT
Text Prompt Engineering Techniques Earned 10월 9, 2024 EDT
Integrate Vertex AI Search and Conversation into Voice and Chat Apps Earned 10월 9, 2024 EDT
프로덕션 머신러닝 시스템 Earned 7월 21, 2023 EDT
머신러닝 작업(MLOps): 시작하기 Earned 7월 20, 2023 EDT
Google Cloud에서 Keras를 사용해 ML 모델을 빌드, 학습, 배포하기 Earned 7월 16, 2023 EDT
Launching into Machine Learning - 한국어 Earned 7월 13, 2023 EDT
How Google Does Machine Learning - 한국어 Earned 7월 8, 2023 EDT
특성 추출 Earned 7월 4, 2023 EDT
Google Cloud Big Data and Machine Learning Fundamentals - 한국어 Earned 6월 25, 2023 EDT

Learn to use LangChain to call Google Cloud LLMs and Generative AI Services and Datastores to simplify complex applications' code.

자세히 알아보기

(Previously named "Developing apps with Vertex AI Agent Builder: Search". Please note there maybe instances in this course where previous product names and titles are used) Enterprises of all sizes have trouble making their information readily accessible to employees and customers alike. Internal documentation is frequently scattered across wikis, file shares, and databases. Similarly, consumer-facing sites often offer a vast selection of products, services, and information, but customers are frustrated by ineffective site search and navigation capabilities. This course teaches you to use AI Applications to integrate enterprise-grade generative AI search.

자세히 알아보기

This course explores Google Cloud technologies to create and generate embeddings. Embeddings are numerical representations of text, images, video and audio, and play a pivotal role in many tasks that involve the identification of similar items, like Google searches, online shopping recommendations, and personalized music suggestions. Specifically, you’ll use embeddings for tasks like classification, outlier detection, clustering and semantic search. You’ll combine semantic search with the text generation capabilities of an LLM to build Retrieval Augmented Generation (RAG) systems and question-answering solutions, on your own proprietary data using Google Cloud’s Vertex AI.

자세히 알아보기

이 과정에서는 AI 기반 검색 기술, 도구, 애플리케이션을 살펴봅니다. 벡터 임베딩을 활용하는 시맨틱 검색, 시맨틱 방식과 키워드 방식을 결합한 하이브리드 검색, 그라운딩된 AI 에이전트로서 AI 할루시네이션을 최소화하는 검색 증강 생성(RAG)에 대해 알아보세요. Vertex AI 벡터 검색을 활용해 지능형 검색 엔진을 빌드하는 실무 경험을 쌓을 수 있습니다.

자세히 알아보기

This course equips full-stack mobile and web developers with the skills to integrate generative AI features into their applications using LangChain. You'll learn how to leverage LangChain’s capabilities for backend flows and seamless model execution, all within the familiar environment of Python. The course guides you through the entire process, from prototyping to production, ensuring a smooth journey in building next-generation AI-powered applications.

자세히 알아보기

This self-paced training course gives participants broad study of security controls and techniques on Google Cloud. Through recorded lectures, demonstrations, and hands-on labs, participants explore and deploy the components of a secure Google Cloud solution, including Cloud Storage access control technologies, Security Keys, Customer-Supplied Encryption Keys, API access controls, scoping, shielded VMs, encryption, and signed URLs. It also covers securing Kubernetes environments.

자세히 알아보기

이 속성 주문형 과정에서는 참가자에게 Google Cloud에서 제공하는 포괄적이고 유연한 인프라 및 플랫폼 서비스를 소개합니다. 참가자는 동영상 강의, 데모, 실무형 실습이 결합된 이 과정을 통해 안전한 네트워크 상호 연결, 부하 분산, 자동 확장, 인프라 자동화, 관리형 서비스가 포함된 솔루션 요소를 살펴보고 배포할 수 있습니다.

자세히 알아보기

이 속성 주문형 과정은 참가자에게 Google Cloud에서 제공하는 포괄적이고 유연한 인프라 및 플랫폼 서비스를 Compute Engine을 중심으로 소개합니다. 참가자는 동영상 강의, 데모, 실무형 실습을 통해 네트워크, 시스템, 애플리케이션 서비스와 같은 인프라 구성요소를 포함한 솔루션 요소를 탐색하고 배포해 볼 수 있습니다. 또한 이 과정에서는 고객 제공 암호화 키, 보안 및 액세스 관리, 할당량 및 요금 청구, 리소스 모니터링 등 실용적인 솔루션을 배포하는 방법에 대해서도 설명합니다.

자세히 알아보기

책임감 있는 AI란 무엇이고 이것이 왜 중요하며 Google에서는 어떻게 제품에 책임감 있는 AI를 구현하고 있는지 설명하는 입문용 마이크로 학습 과정입니다. Google의 7가지 AI 원칙도 소개합니다.

자세히 알아보기

Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.

자세히 알아보기

이 과정에서는 학습자가 검증된 설계 패턴을 사용하여 Google Cloud에서 고도로 안정적이고 효율적인 솔루션을 빌드하는 데 필요한 역량을 기를 수 있습니다. 'Google Compute Engine으로 설계하기' 또는 'Google Kubernetes Engine으로 설계하기' 과정에서 이어지는 내용이며, 학습자가 두 과정에서 다루는 기술을 실무에서 사용해 본 경험이 있다는 전제로 진행됩니다. 학습자는 프레젠테이션, 설계 활동, 실무형 실습을 통해 고도로 안정적이고 안전하고 비용 효율적이며 가용성이 높은 Google Cloud 배포를 설계하는 데 필요한 비즈니스 요구사항과 기술 요구사항을 정의하고 이 사이의 적절한 균형을 유지하는 방법을 익힐 수 있습니다.

자세히 알아보기

중급 Google Cloud에서 Terraform으로 인프라 빌드 기술 배지 과정을 완료하여 Terraform을 사용하는 코드형 인프라(IaC) 원칙, Terraform 구성으로 Google Cloud 리소스 프로비저닝 및 관리, 효과적인 상태 관리(로컬 및 원격), 재사용성 및 구성을 위한 Terraform 코드 모듈화 등에 관한 기술을 입증하세요. 기술 배지 과정을 이수하면 실무형 실습과 챌린지 평가를 통해 특정 제품에 대한 실무 지식을 검증받을 수 있습니다. 과정을 완료하여 배지를 획득하거나 챌린지 실습으로 바로 넘어가 지금 배지를 획득하세요. 배지를 획득하면 자신의 숙련도를 증명하고 직업 프로필을 개선하며 궁극적으로는 더 나은 채용 기회를 얻을 수 있습니다. 프로필로 이동하여 획득한 배지를 추적하세요.

자세히 알아보기

Google Cloud 네트워크 설정 과정을 완료하고 기술 배지를 획득하세요. 이 실습에서는 Google Cloud Platform에서 기본적인 네트워킹 작업을 수행하는 방법을 알아봅니다. 커스텀 네트워크를 만들고 서브넷 방화벽 규칙을 추가한 다음 VM을 만들고 VM이 서로 통신할 때의 지연 시간을 테스트합니다. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 기술 배지 과정을 통해 대화형 실습 환경에서 지식을 적용하는 역량을 테스트할 수 있습니다. 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 디지털 배지를 받을 수 있습니다.

자세히 알아보기

This course helps learners create a study plan for the PCA (Professional Cloud Architect) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

자세히 알아보기

Google Cloud 네트워크 개발 과정을 완료하고 기술 배지를 획득하세요. 이 과정에서는 IAM 역할 탐색 및 프로젝트 액세스 권한 추가/삭제, VPC 네트워크 생성, Compute Engine VM 배포 및 모니터링, SQL 쿼리 작성, Compute Engine에서 VM 배포 및 모니터링, Kubernetes를 여러 배포 접근 방식과 함께 사용하여 애플리케이션을 배포하는 등의 다양한 애플리케이션 배포 및 모니터링 방법을 배울 수 있습니다. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 기술 배지 과정을 통해 대화형 실습 환경에서 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 기술 배지를 받을 수 있습니다.

자세히 알아보기

이 과정에서는 생성형 AI 모델과 상호작용하고 비즈니스 아이디어의 프로토타입을 제작하여 프로덕션으로 출시할 수 있는 도구인 Vertex AI Studio를 소개합니다. 몰입감 있는 사용 사례, 흥미로운 강의, 실무형 실습을 통해 프롬프트부터 프로덕션에 이르는 수명 주기를 살펴보고 Vertex AI Studio를 Gemini 멀티모달 애플리케이션, 프롬프트 설계, 프롬프트 엔지니어링, 모델 조정에 활용하는 방법을 알아봅니다. 이 과정의 목표는 Vertex AI Studio로 프로젝트에서 생성형 AI의 잠재력을 활용하는 것입니다.

자세히 알아보기

This skill badge course is designed to offer hands-on experience through labs, enabling participants to master Document AI for document processing and extraction tasks. By the end of the course, participants will be proficient in creating and testing Document AI processors, customizing document extraction using Document AI Workbench, and building custom processors to tackle real-world document processing challenges.

자세히 알아보기

This workload aims to upskill Google Cloud partners to perform specific tasks associated with building a Custom Doc Extractor using the Google Cloud AI solution. The following will be addressed: Service: Document AI Task: Extract fields Processors: Custom Document Extractor and Document Splitter Prediction: Using Endpoint to programmatically extract fields

자세히 알아보기

중급 Gemini 멀티모달 및 멀티모달 RAG로 리치 문서 검사하기 기술 배지 과정을 완료하여 다음 기술 역량을 입증하세요. 멀티모달 프롬프트를 사용하여 텍스트 및 시각적 데이터에서 정보 추출, 동영상 설명 생성, Gemini의 멀티모달 기능을 사용하여 동영상은 물론 그 밖의 추가 정보 검색, 텍스트와 이미지가 포함된 문서의 메타데이터 구축, 모든 관련 텍스트 청크 가져오기, Gemini의 멀티모달 검색 증강 생성(RAG)을 사용하여 인용 문구 인쇄 등이 있습니다. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 기술 배지 과정을 통해 대화형 실습 환경에서 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 기술 배지를 받을 수 있습니다.

자세히 알아보기

This course explores how to leverage Looker to create data experiences and gain insights with modern business intelligence (BI) and reporting.

자세히 알아보기

Demonstrate your ability to implement updated prompt engineering techniques and utilize several of Gemini's key capacilities including multimodal understanding and function calling. Then integrate generative AI into a RAG application deployed to Cloud Run. This course contains labs that are to be used as a test environment. They are deployed to test your understanding as a learner with a limited scope. These technologies can be used with fewer limitations in a real world environment.

자세히 알아보기

Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.

자세히 알아보기

This course on Integrate Vertex AI Search and Conversation into Voice and Chat Apps is composed of a set of labs to give you a hands on experience to interacting with new Generative AI technologies. You will learn how to create end-to-end search and conversational experiences by following examples. These technologies complement predefined intent-based chat experiences created in Dialogflow with LLM-based, generative answers that can be based on your own data. Also, they allow you to porvide enterprise-grade search experiences for internal and external websites to search documents, structure data and public websites.

자세히 알아보기

이 과정에서는 프로덕션 환경에서 고성능 ML 시스템을 빌드하기 위한 구성요소와 권장사항을 자세히 살펴봅니다. 정적 학습, 동적 학습, 정적 추론, 동적 추론, 분산 TensorFlow, TPU 등 고성능 ML 시스템 빌드와 관련된 일반적인 고려사항을 다룹니다. 이 과정에서는 정확한 예측 능력 외에도 양질의 ML 시스템을 만드는 특성을 탐구하는 데 중점을 둡니다.

자세히 알아보기

이 과정에서는 Google Cloud에서 프로덕션 ML 시스템 배포, 평가, 모니터링, 운영을 위한 MLOps 도구와 권장사항을 소개합니다. MLOps는 프로덕션에서 ML 시스템을 배포, 테스트, 모니터링, 자동화하는 방법론입니다. 머신러닝 엔지니어링 전문가들은 배포된 모델의 지속적인 개선과 평가를 위해 도구를 사용합니다. 이들이 협력하거나 때론 그 역할을 하는 데이터 과학자는 고성능 모델을 빠르고 정밀하게 배포할 수 있도록 모델을 개발합니다.

자세히 알아보기

이 과정에서는 TensorFlow 및 Keras를 사용한 ML 모델 빌드, ML 모델의 정확성 개선, 사용 사례 확장을 위한 ML 모델 작성에 대해 다룹니다.

자세히 알아보기

이 과정에서는 먼저 데이터에 관해 논의하면서 데이터 품질을 개선하고 탐색적 데이터 분석을 수행하는 방법을 알아봅니다. Vertex AI AutoML과 코드를 한 줄도 작성하지 않고 ML 모델을 빌드하고, 학습시키고, 배포하는 방법을 설명합니다. 학습자는 Big Query ML의 이점을 이해할 수 있습니다. 그런 다음, 머신러닝(ML) 모델 최적화 방법과 일반화 및 샘플링으로 커스텀 학습용 ML 모델 품질을 평가하는 방법을 다룹니다.

자세히 알아보기

Google Cloud에서 머신러닝을 구현하기 위한 권장사항에는 어떤 것이 있을까요? Vertex AI란 무엇이고, 이 플랫폼을 사용하여 코드는 한 줄도 작성하지 않고 AutoML 머신러닝 모델을 빠르게 빌드, 학습, 배포하려면 어떻게 해야 할까요? 머신러닝이란 무엇이며 어떤 종류의 문제를 해결할 수 있을까요? Google은 머신러닝을 조금 다른 방식으로 바라봅니다. Google이 머신러닝과 관련하여 중요하게 생각하는 것은 관리형 데이터 세트를 위한 통합 플랫폼과 특징 저장소를 제공하고, 코드를 작성하지 않고도 머신러닝 모델을 빌드, 학습, 배포할 방법을 제공하고, 데이터에 라벨을 지정하고, TensorFlow, scikit-learn, Pytorch, R 등과 같은 프레임워크를 사용하여 Workbench 노트북을 만들 수 있도록 지원하는 것입니다. Google의 Vertex AI 플랫폼에는 커스텀 모델을 학습시키고, 구성요소 파이프라인을 빌드하고, 온라인 및 일괄 예측을 실행하는 기능이 포함되어 있습니다. 후보 사용 사례를 머신러닝으로 구동되도록 변환하는 5단계를 살펴보고, 단계를 건너뛰지 않는 것이 중요한 이유를 알아봅니다. 마지막으로, 머신러닝이 증폭시킬 수 있는 편향과 이를 인식할 방법을 살펴봅니다.

자세히 알아보기

이 과정에서는 Vertex AI Feature Store 사용의 이점, ML 모델의 정확성을 개선하는 방법, 가장 유용한 특성을 만드는 데이터 열을 찾는 방법을 살펴봅니다. 이 과정에는 BigQuery ML, Keras, TensorFlow를 사용한 특성 추출에 관한 콘텐츠와 실습도 포함되어 있습니다.

자세히 알아보기

이 과정에서는 데이터-AI 수명 주기를 지원하는 Google Cloud 빅데이터 및 머신러닝 제품과 서비스를 소개합니다. Google Cloud에서 Vertex AI를 사용하여 빅데이터 파이프라인 및 머신러닝 모델을 빌드하는 프로세스, 문제점 및 이점을 살펴봅니다.

자세히 알아보기