Partecipa Accedi

Rudrajit Dawn

Membro dal giorno 2024

Campionato Diamante

12225 punti
Integrate Vertex AI Search and Conversation into Voice and Chat Apps Earned ott 4, 2024 EDT
Develop Advanced Enterprise Search and Conversation Applications Earned ott 3, 2024 EDT
Custom Search with Embeddings in Vertex AI Earned set 26, 2024 EDT
Vector Search and Embeddings Earned set 18, 2024 EDT
Implementing Generative AI with Vertex AI Earned set 18, 2024 EDT
Create Image Captioning Models - Italiano Earned set 18, 2024 EDT
Introduction to Image Generation - Italiano Earned set 18, 2024 EDT
Transformer Models and BERT Model - Italiano Earned set 18, 2024 EDT
Encoder-Decoder Architecture - Italiano Earned set 18, 2024 EDT
Attention Mechanism - Italiano Earned set 18, 2024 EDT

This course on Integrate Vertex AI Search and Conversation into Voice and Chat Apps is composed of a set of labs to give you a hands on experience to interacting with new Generative AI technologies. You will learn how to create end-to-end search and conversational experiences by following examples. These technologies complement predefined intent-based chat experiences created in Dialogflow with LLM-based, generative answers that can be based on your own data. Also, they allow you to porvide enterprise-grade search experiences for internal and external websites to search documents, structure data and public websites.

Scopri di più

In this course, you'll use text embeddings for tasks like classification, outlier detection, text clustering and semantic search. You'll combine semantic search with the text generation capabilities of an LLM to build Retrieval Augmented Generation (RAG) solutions, such as for question-answering systems, using Google Cloud's Vertex AI and Google Cloud databases.

Scopri di più

This course explores Google Cloud technologies to create and generate embeddings. Embeddings are numerical representations of text, images, video and audio, and play a pivotal role in many tasks that involve the identification of similar items, like Google searches, online shopping recommendations, and personalized music suggestions. Specifically, you’ll use embeddings for tasks like classification, outlier detection, clustering and semantic search. You’ll combine semantic search with the text generation capabilities of an LLM to build Retrieval Augmented Generation (RAG) systems and question-answering solutions, on your own proprietary data using Google Cloud’s Vertex AI.

Scopri di più

Explore AI-powered search technologies, tools, and applications in this course. Learn semantic search utilizing vector embeddings, hybrid search combining semantic and keyword approaches, and retrieval-augmented generation (RAG) minimizing AI hallucinations as a grounded AI agent. Gain practical experience with Vertex AI Vector Search to build your intelligent search engine.

Scopri di più

This course will help ML Engineers, Developers, and Data Scientists implement Large Language Models for Generative AI use cases with Vertex AI. The first two modules of this course contain links to videos and prerequisite course materials that will build your knowledge foundation in Generative AI. Please do not skip these modules. The advanced modules in this course assume you have completed these earlier modules.

Scopri di più

Questo corso ti insegna come creare un modello per le didascalie delle immagini utilizzando il deep learning. Scoprirai i diversi componenti di un modello per le didascalie delle immagini, come l'encoder e il decoder, e imparerai ad addestrare e valutare il tuo modello. Alla fine di questo corso, sarai in grado di creare modelli personali per le didascalie delle immagini e utilizzarli per generare didascalie per le immagini.

Scopri di più

Questo corso introduce i modelli di diffusione, una famiglia di modelli di machine learning che recentemente si sono dimostrati promettenti nello spazio di generazione delle immagini. I modelli di diffusione traggono ispirazione dalla fisica, in particolare dalla termodinamica. Negli ultimi anni, i modelli di diffusione sono diventati popolari sia nella ricerca che nella produzione. I modelli di diffusione sono alla base di molti modelli e strumenti di generazione di immagini all'avanguardia su Google Cloud. Questo corso ti introduce alla teoria alla base dei modelli di diffusione e a come addestrarli ed eseguirne il deployment su Vertex AI.

Scopri di più

Questo corso ti introduce all'architettura Transformer e al modello BERT (Bidirectional Encoder Representations from Transformers). Scopri i componenti principali dell'architettura Transformer, come il meccanismo di auto-attenzione, e come viene utilizzata per creare il modello BERT. Imparerai anche le diverse attività per le quali può essere utilizzato il modello BERT, come la classificazione del testo, la risposta alle domande e l'inferenza del linguaggio naturale. Si stima che il completamento di questo corso richieda circa 45 minuti.

Scopri di più

Questo corso ti offre un riepilogo dell'architettura encoder-decoder, che è un'architettura di machine learning potente e diffusa per attività da sequenza a sequenza come traduzione automatica, riassunto del testo e risposta alle domande. Apprenderai i componenti principali dell'architettura encoder-decoder e come addestrare e fornire questi modelli. Nella procedura dettagliata del lab corrispondente, implementerai in TensorFlow dall'inizio un semplice codice dell'architettura encoder-decoder per la generazione di poesie da zero.

Scopri di più

Questo corso ti introdurrà al meccanismo di attenzione, una potente tecnica che consente alle reti neurali di concentrarsi su parti specifiche di una sequenza di input. Imparerai come funziona l'attenzione e come può essere utilizzata per migliorare le prestazioni di molte attività di machine learning, come la traduzione automatica, il compendio di testi e la risposta alle domande.

Scopri di più