Questo corso illustra i vantaggi dell'utilizzo di Vertex AI Feature Store, come migliorare l'accuratezza dei modelli di ML e come trovare le colonne di dati che forniscono le caratteristiche più utili. Il corso include inoltre contenuti e lab sul feature engineering utilizzando BigQuery ML, Keras e TensorFlow.
Questo corso tratta la creazione di modelli ML con TensorFlow e Keras, il miglioramento dell'accuratezza dei modelli ML e la scrittura di modelli ML per l'uso su larga scala.
Il corso inizia con una discussione sui dati: come migliorare la qualità dei dati ed eseguire analisi esplorative dei dati. Descriveremo Vertex AI AutoML e come creare, addestrare ed eseguire il deployment di un modello di ML senza scrivere una sola riga di codice. Comprenderai i vantaggi di Big Query ML. Discuteremo quindi di come ottimizzare un modello di machine learning (ML) e di come la generalizzazione e il campionamento possano aiutare a valutare la qualità dei modelli di ML per l'addestramento personalizzato.
This course explores what ML is and what problems it can solve. The course also discusses best practices for implementing machine learning. You’re introduced to Vertex AI, a unified platform to quickly build, train, and deploy AutoML machine learning models. The course discusses the five phases of converting a candidate use case to be driven by machine learning, and why it’s important to not skip them. The course ends with recognizing the biases that ML can amplify and how to recognize them.
Questo corso presenta i prodotti e i servizi per big data e di machine learning di Google Cloud che supportano il ciclo di vita dai dati all'IA. Esplora i processi, le sfide e i vantaggi della creazione di una pipeline di big data e di modelli di machine learning con Vertex AI su Google Cloud.