参加 ログイン

MADDELA CHENNA KESHAULU

メンバー加入日: 2020

ゴールドリーグ

80776 ポイント
Vertex AI を使用した ML オペレーション(MLOps): モデルの評価 Earned 6月 6, 2025 EDT
生成 AI のための ML オペレーション(MLOps) Earned 6月 5, 2025 EDT
Dataflow を使用したサーバーレスのデータ処理: 基礎 Earned 5月 29, 2025 EDT
Associate Cloud Engineer の取得に向けた準備 Earned 12月 7, 2024 EST
Google Cloud 環境での DevSecOps の使用 Earned 11月 15, 2024 EST
Google Cloud でのオブザーバビリティ Earned 11月 14, 2024 EST
Google Cloud Observability を使用したモニタリングとロギング Earned 11月 13, 2024 EST
Data Engineering on Google Cloud の概要 Earned 11月 11, 2024 EST
Google Cloud での DevOps ワークフローの実装 Earned 11月 9, 2024 EST
Google Cloud における Terraform を使用したインフラストラクチャの構築 Earned 11月 8, 2024 EST
Google Cloud におけるアプリ開発環境の設定 Earned 11月 3, 2024 EST
DEPRECATED Cloud Operations and Service Mesh with Anthos Earned 11月 2, 2024 EDT
Hybrid Cloud Service Mesh with Anthos Earned 11月 2, 2024 EDT
Google Cloud で Terraform を使ってみる Earned 11月 1, 2024 EDT
Google Cloud におけるロギングとモニタリング Earned 11月 1, 2024 EDT
Hybrid Cloud Modernizing Applications with Anthos Earned 6月 30, 2024 EDT
Application Development with Cloud Run Earned 6月 29, 2024 EDT
App Deployment, Debugging, and Performance - 日本語版 Earned 6月 26, 2024 EDT
Securing and Integrating Components of Your Application - 日本語版 Earned 6月 25, 2024 EDT
Google Kubernetes Engine を使ってみる Earned 6月 14, 2024 EDT
Build and Deploy a Generative AI solution using a RAG framework Earned 5月 23, 2024 EDT
ベクトル検索とエンベディング Earned 5月 18, 2024 EDT
Integrate Vertex AI Search and Conversation into Voice and Chat Apps Earned 3月 29, 2024 EDT
Text Prompt Engineering Techniques Earned 3月 29, 2024 EDT
Develop Advanced Enterprise Search and Conversation Applications Earned 3月 29, 2024 EDT
Vertex AI を使用した ML オペレーション(MLOps): 特徴の管理 Earned 1月 14, 2024 EST
ML オペレーション(MLOps): 概要 Earned 1月 14, 2024 EST
Recommendation Systems on Google Cloud Earned 1月 14, 2024 EST
Natural Language Processing on Google Cloud Earned 1月 7, 2024 EST
Computer Vision Fundamentals with Google Cloud Earned 12月 19, 2023 EST
本番環境 ML システム Earned 11月 21, 2023 EST
Google Cloud における AI と ML の概要 Earned 10月 12, 2023 EDT
Google Cloud Big Data and Machine Learning Fundamentals - 日本語版 Earned 10月 9, 2023 EDT
Text Prompt Engineering Techniques Earned 9月 29, 2023 EDT
Search with AI Applications Earned 9月 24, 2023 EDT
企業における ML Earned 9月 19, 2023 EDT
特徴量エンジニアリング Earned 9月 8, 2023 EDT
Implementing Generative AI with Vertex AI Earned 8月 28, 2023 EDT
Google Cloud での Keras を使った ML モデルの構築、トレーニング、デプロイ Earned 8月 25, 2023 EDT
Launching into Machine Learning - 日本語版 Earned 8月 17, 2023 EDT
Generative AI Explorer : Vertex AI Earned 8月 13, 2023 EDT
Generative AI Fundamentals Earned 8月 12, 2023 EDT
How Google Does Machine Learning - 日本語版 Earned 8月 12, 2023 EDT
Vertex AI Studio の概要 Earned 7月 17, 2023 EDT
画像キャプション モデルの作成 Earned 7月 17, 2023 EDT
Transformer モデルと BERT モデル Earned 7月 16, 2023 EDT
Encoder-Decoder アーキテクチャ Earned 7月 16, 2023 EDT
アテンション機構 Earned 7月 16, 2023 EDT
画像生成の概要 Earned 7月 16, 2023 EDT
責任ある AI: Google Cloud における AI に関する原則の適用 Earned 7月 16, 2023 EDT
Professional Data Engineer の取得に向けた準備 Earned 7月 15, 2023 EDT
Generative AI Fundamentals - 日本語版 Earned 7月 9, 2023 EDT
責任ある AI の概要 Earned 7月 9, 2023 EDT
大規模言語モデルの概要 Earned 7月 9, 2023 EDT
生成 AI の概要 Earned 7月 9, 2023 EDT
柔軟性のある Google Cloud インフラストラクチャ: スケーリングと自動化 Earned 5月 23, 2023 EDT
Preparing for Your Professional Cloud Architect Journey - 日本語版 Earned 5月 16, 2023 EDT
Preparing for the Google Cloud Professional Cloud Architect Exam 日本語版 Earned 4月 24, 2023 EDT
Google の SRE 文化の醸成 Earned 3月 21, 2023 EDT
Getting Started with Application Development - 日本語版 Earned 5月 9, 2022 EDT
DEPRECATED Network Performance and Optimization Earned 1月 27, 2022 EST
安全な Google Cloud ネットワークの構築 Earned 1月 16, 2022 EST
Networking in Google Cloud: Fundamentals - 日本語版 Earned 1月 12, 2022 EST
Networking in Google Cloud: Routing and Addressing - 日本語版 Earned 1月 9, 2022 EST
重要な Google Cloud インフラストラクチャ: コアサービス Earned 12月 10, 2021 EST
重要な Google Cloud インフラストラクチャ: 基礎 Earned 12月 8, 2021 EST
Google Cloud の基礎: コア インフラストラクチャ Earned 12月 8, 2021 EST
Google Cloud における復元力のあるストリーミング分析システムの構築 Earned 7月 11, 2021 EDT
Smart Analytics, Machine Learning, and AI on Google Cloud - 日本語版 Earned 7月 10, 2021 EDT
Google Cloud を使用したデータレイクとデータ ウェアハウスのモダナイゼーション Earned 7月 5, 2021 EDT
Google Cloud Big Data and Machine Learning Fundamentals - 日本語版 Earned 7月 3, 2021 EDT
Hybrid Cloud Infrastructure Foundations with Anthos Earned 6月 18, 2021 EDT
DEPRECATED Cloud Architecture Earned 3月 5, 2021 EST
Cloud Architecture - Design, Implement, and Manage Earned 3月 1, 2021 EST
重要な Google Cloud インフラストラクチャ: 基礎 Earned 2月 26, 2021 EST
Architecting with Google Kubernetes Engine: Production - 日本語版 Earned 2月 21, 2021 EST
Architecting with Google Kubernetes Engine: Workloads - 日本語版 Earned 2月 10, 2021 EST
Architecting with Google Kubernetes Engine: Foundations - 日本語版 Earned 1月 27, 2021 EST
Essential Cloud Infrastructure: Foundation Earned 12月 9, 2020 EST
信頼性に優れた Google Cloud インフラストラクチャ: 設計とプロセス Earned 11月 16, 2020 EST
Elastic Cloud Infrastructure: Scaling and Automation 日本語版 Earned 9月 11, 2020 EDT
重要な Google Cloud インフラストラクチャ: コアサービス Earned 8月 26, 2020 EDT
Google Cloud Platform Fundamentals: Core Infrastructure Earned 8月 12, 2020 EDT

このコースでは、ML の実務担当者に、生成 AI モデルと予測 AI モデルの両方を評価するための重要なツール、手法、ベスト プラクティスを身につけていただきます。モデル評価は、ML システムが本番環境で信頼性が高く、正確で、高性能な結果を確実に提供するための重要な分野です。 参加者は、さまざまな評価指標、方法論のほか、さまざまなモデルタイプやタスクにおけるそれらの適切な適用について理解を深めます。このコースでは、生成 AI モデルによってもたらされる固有の課題に重点を置き、それらの課題に効果的に取り組むための戦略を提供します。参加者は、Google Cloud の Vertex AI プラットフォームを活用して、モデルの選択、最適化、継続的なモニタリングのための堅牢な評価プロセスを実装する方法を学びます。

詳細

このコースでは、生成 AI モデルのデプロイと管理において MLOps チームが直面する特有の課題に対処するために必要な知識とツールを提供し、AI チームが MLOps プロセスを合理化して生成 AI プロジェクトを成功させるうえで Vertex AI がどのように役立つかを説明します。

詳細

このコースは、Dataflow を使用したサーバーレスのデータ処理に関する 3 コースシリーズのパート 1 です。この最初のコースでは、始めに Apache Beam とは何か、そして Dataflow とどのように関係しているかを復習します。次に、Apache Beam のビジョンと Beam Portability フレームワークの利点について説明します。Beam Portability フレームワークによって、デベロッパーが好みのプログラミング言語と実行バックエンドを使用できるビジョンが実現します。続いて、Dataflow によってどのように費用を節約しながらコンピューティングとストレージを分離できるか、そして識別ツール、アクセスツール、管理ツールがどのように Dataflow パイプラインと相互に機能するかを紹介します。最後に、Dataflow でそれぞれのユースケースに合った適切なセキュリティ モデルを実装する方法について学習します。

詳細

このコースでは、Associate Cloud Engineer 認定試験の合格を目指す方が受験の準備を進めることができます。試験範囲に含まれる Google Cloud ドメインの概要と、ドメインに関する知識を高めるための学習計画の作成方法について学習します。

詳細

このコースでは、Google Cloud で安全かつ効率的な DevSecOps プラクティスを実践するための基本的なスキルを学びます。Artifact Registry、Cloud Build、 Cloud Deploy、Binary Authorization などの Google Cloud サービスを使用して開発パイプラインを保護する方法を学びます。これにより、 CI/CD パイプライン全体でセキュリティ制御を使用して、コンテナ化されたアプリケーションをビルド、テスト、デプロイできます。

詳細

二部構成でお届けする「Google Cloud でのオブザーバビリティ」コースの第 2 部へようこそ。 このコースでは、Error Reporting、Cloud Trace、Cloud Profiler などのアプリケーション パフォーマンス管理ツールについて学びます。

詳細

入門スキルバッジ コース「Google Cloud Observability を使用したモニタリングとロギング」を修了すると、 Compute Engine における仮想マシンのモニタリング、 複数プロジェクトの監視を目的とした Cloud Monitoring の利用、モニタリング機能とロギング機能の Cloud Functions への拡張、 アプリケーションに対するカスタム指標の作成と送信、カスタム指標に基づく Cloud Monitoring アラートの構成に関するスキルを実証できます。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキル バッジ コースと最終評価チャレンジラボを修了してスキルバッジを獲得し、 ネットワークで共有しましょう。

詳細

このコースでは、Google Cloud におけるデータ エンジニアリング、データ エンジニアの役割と責任、それらが Google Cloud の各サービスにどのように対応しているかについて学びます。また、データ エンジニアリングの課題に対処する方法も学習します。

詳細

Google Cloud での DevOps ワークフローの実装 コースの中級スキルバッジを獲得できるアクティビティを修了すると、 Cloud Source Repositories を使用した Git リポジトリの作成、 Google Kubernetes Engine(GKE)上でのデプロイのリリース、管理、スケール、 コンテナ イメージのビルドと GKE へのデプロイを自動化する CI / CD パイプラインの設計といったスキルを実証できます。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキル バッジ コースと最終評価チャレンジラボを完了し、スキルバッジを獲得して ネットワークで共有しましょう。

詳細

「Google Cloud における Terraform を使用したインフラストラクチャの構築」の中級スキルバッジを獲得すると、 Terraform を使用した Infrastructure as Code(IaC)の原則、Terraform 構成を使用した Google Cloud リソースのプロビジョニングと管理、 状態の効果的な管理(ローカルおよびリモート)、組織内での再利用性を念頭に置いた Terraform コードのモジュール化といったスキルを実証できます。 スキルバッジは、ハンズオンラボと課題の評価を通じて特定のプロダクトに関する実践的な知識を証明するものです。コースを修了してバッジを獲得することも、 チャレンジラボに直接挑戦して今すぐバッジを獲得することもできます。バッジは、習熟していることを証明し、 仕事用プロフィールを充実させ、最終的にはキャリアの可能性を広げることにつながります。 プロフィールにアクセスすると、獲得したバッジを確認できます。

詳細

「Google Cloud におけるアプリ開発環境の設定」コースを完了すると、スキルバッジを獲得できます。このコースでは、 Cloud Storage、Identity and Access Management、Cloud Functions、Pub/Sub のテクノロジーの基本機能を使用して、ストレージ中心のクラウド インフラストラクチャを構築し接続する方法を学びます。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジです。 インタラクティブなハンズオン環境で知識の応用力が試されます。このスキルバッジと最終評価チャレンジラボを完了し、スキルバッジを獲得してネットワークで共有しましょう。

詳細

Course two of the Architecting Hybrid Cloud with Anthos series prepares students to operate and observe Anthos environments. Through presentations and hands-on labs, participants explore adjusting existing clusters, setting up advanced traffic routing policies, securing communication across workloads, and observing clusters in Anthos. This course is a continuation of course one, Multi-Cluster, Multi-Cloud with Anthos, and assumes direct experience with the topics covered in that course.

詳細

This on-demand course equips students to understand and adopt Istio-based service-mesh with Anthos for centralized observability, traffic management, and service-level security. This is the second course of the Architecting Hybrid Cloud Infrastructure with Anthos series. After completing this course, learners should continue to the Hybrid Cloud Multi-Cluster with Anthos course. Completion of the Architecting with Google Kubernetes Engine path is a prerequisite for this course.

詳細

このコースでは、Google Cloud 向けに Terraform を使用する方法の概要を説明します。このコースを受講すると、Terraform を使用して Infrastructure as Code を実装し、その主要な特性と機能を使って Google Cloud インフラストラクチャを作成および管理する方法について説明できるようになります。 また、Terraform を使用して Google Cloud のリソースを構築、管理する実践的な演習を受けられます。

詳細

このコースでは、Google Cloud のインフラストラクチャとアプリケーションのパフォーマンスをモニタリングして改善するための手法を学びます。 プレゼンテーション、デモ、ハンズオンラボ、実際の事例紹介を組み合わせて活用することにより、フルスタック モニタリング、リアルタイムでのログ管理と分析、本番環境でのコードのデバッグ、アプリケーション パフォーマンスのボトルネックのトレース、CPU とメモリ使用量のプロファイリングに関する経験を積むことができます。

詳細

Course four of the Anthos series prepares students to consider multiple approaches for modernizing applications and services within Anthos environments. Topics include optimizing workloads on serverless platforms and migrating workloads to Anthos. This course is a continuation of course three, Anthos on Bare Metal, and assumes direct experience with the topics covered in that course.

詳細

This course introduces you to fundamentals, practices, capabilities and tools applicable to modern cloud-native application development using Google Cloud Run. Through a combination of lectures, hands-on labs, and supplemental materials, you will learn how to on Google Cloud using Cloud Run.design, implement, deploy, secure, manage, and scale applications

詳細

Course Description:

詳細

Course Description:

詳細

「Google Kubernetes Engine を使ってみる」コースへようこそ。Kubernetes にご興味をお持ちいただきありがとうございます。Kubernetes は、アプリケーションとハードウェア インフラストラクチャとの間にあるソフトウェア レイヤです。Google Kubernetes Engine は、Google Cloud 上のマネージド サービスとしての Kubernetes を提供します。 このコースでは、Google Kubernetes Engine(一般に GKE と呼ばれています)の基礎と、Google Cloud でアプリケーションをコンテナ化して実行する方法を学びます。このコースでは、まず Google Cloud の基本事項を確認します。続けて、コンテナ、Kubernetes、Kubernetes アーキテクチャ、Kubernetes オペレーションの概要について学びます。

詳細

Demonstrate your ability to implement updated prompt engineering techniques and utilize several of Gemini's key capacilities including multimodal understanding and function calling. Then integrate generative AI into a RAG application deployed to Cloud Run. This course contains labs that are to be used as a test environment. They are deployed to test your understanding as a learner with a limited scope. These technologies can be used with fewer limitations in a real world environment.

詳細

このコースでは、AI を活用した検索テクノロジー、ツール、アプリケーションについて学びます。ベクトル エンベディングを利用するセマンティック検索、セマンティック アプローチとキーワード アプローチを組み合わせたハイブリッド検索、グラウンディング対応 AI エージェントとして AI のハルシネーションを最小限に抑える検索拡張生成(RAG)をご紹介します。Vertex AI Vector Search を実践的な経験を積んで、インテリジェントな検索エンジンを構築しましょう。

詳細

This course on Integrate Vertex AI Search and Conversation into Voice and Chat Apps is composed of a set of labs to give you a hands on experience to interacting with new Generative AI technologies. You will learn how to create end-to-end search and conversational experiences by following examples. These technologies complement predefined intent-based chat experiences created in Dialogflow with LLM-based, generative answers that can be based on your own data. Also, they allow you to porvide enterprise-grade search experiences for internal and external websites to search documents, structure data and public websites.

詳細

Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.

詳細

In this course, you'll use text embeddings for tasks like classification, outlier detection, text clustering and semantic search. You'll combine semantic search with the text generation capabilities of an LLM to build Retrieval Augmented Generation (RAG) solutions, such as for question-answering systems, using Google Cloud's Vertex AI and Google Cloud databases.

詳細

このコースでは、Google Cloud 上で本番環境の ML システムをデプロイ、評価、モニタリング、運用するための MLOps ツールとベスト プラクティスについて説明します。MLOps は、本番環境 ML システムのデプロイ、テスト、モニタリング、自動化に重点を置いた規範です。 受講者は、SDK レイヤで Vertex AI Feature Store のストリーミング取り込みを使用する実践的な演習を受けられます。

詳細

このコースでは、Google Cloud 上で本番環境の ML システムをデプロイ、評価、モニタリング、運用するための MLOps ツールとベスト プラクティスについて説明します。MLOps は、本番環境 ML システムのデプロイ、テスト、モニタリング、自動化に重点を置いた規範です。機械学習エンジニアリングの担当者は、ツールを活用して、デプロイしたモデルの継続的な改善と評価を行います。また、データ サイエンティストと協力して、あるいは自らがデータ サイエンティストとして、最も効果的なモデルを迅速かつ正確にデプロイできるようモデルを開発します。

詳細

In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.

詳細

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

詳細

This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.

詳細

このコースでは、本番環境で高パフォーマンスな ML システムを構築するためのコンポーネントとベスト プラクティスについて学習します。また、ML システムを構築するうえで最も一般的な考慮事項を紹介します。これには、静的トレーニング、動的トレーニング、静的な推論、動的な推論、分散型 TensorFlow、TPU などが含まれます。このコースでは、優れた予測能力にとどまらない、優れた ML システムの特性を探索することに焦点を当てています。

詳細

このコースでは、予測 AI と生成 AI の両方のプロジェクトを構築できる、Google Cloud の AI および機械学習(ML)サービスについて紹介します。AI の基盤、開発、ソリューションを含むデータから AI へのライフサイクル全体で利用可能なテクノロジー、プロダクト、ツールについて説明するとともに、魅力的な学習体験と実践的なハンズオン演習を通じて、データ サイエンティスト、AI 開発者、ML エンジニアの方々がスキルや知識を強化できるようサポートすることを目指しています。

詳細

このコースでは、データから AI へのライフサイクルをサポートする Google Cloud のビッグデータと ML のプロダクトやサービスを紹介します。また、Google Cloud で Vertex AI を使用してビッグデータ パイプラインと ML モデルを作成する際のプロセス、課題、メリットについて説明します。

詳細

Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.

詳細

(Previously named "Developing apps with Vertex AI Agent Builder: Search". Please note there maybe instances in this course where previous product names and titles are used) Enterprises of all sizes have trouble making their information readily accessible to employees and customers alike. Internal documentation is frequently scattered across wikis, file shares, and databases. Similarly, consumer-facing sites often offer a vast selection of products, services, and information, but customers are frustrated by ineffective site search and navigation capabilities. This course teaches you to use AI Applications to integrate enterprise-grade generative AI search.

詳細

このコースでは、ML ワークフローに対する実践的なアプローチを取り上げます。具体的には、いくつかの ML のビジネス要件とユースケースに取り組む ML チームをケーススタディ形式で紹介します。このチームは、データ マネジメントとガバナンスに必要なツールを理解し、データの前処理に最適なアプローチを検討する必要があります。 2 つのユースケースに対して ML モデルを構築するための 3 つのオプションがチームに提示されます。このコースでは、チームの目標を達成するために、AutoML、BigQuery ML、カスタム トレーニングを使用する理由について説明します。

詳細

このコースでは、Vertex AI Feature Store を使用するメリット、ML モデルの精度を向上させる方法、最も有効な特徴を抽出できるデータ列の見極め方について説明します。また、BigQuery ML、Keras、TensorFlow を使用した特徴量エンジニアリングに関するコンテンツとラボも用意されています。

詳細

This course will help ML Engineers, Developers, and Data Scientists implement Large Language Models for Generative AI use cases with Vertex AI. The first two modules of this course contain links to videos and prerequisite course materials that will build your knowledge foundation in Generative AI. Please do not skip these modules. The advanced modules in this course assume you have completed these earlier modules.

詳細

このコースでは、TensorFlow と Keras を使用した ML モデルの構築、ML モデルの精度の向上、スケーリングに対応した ML モデルの作成について取り上げます。

詳細

このコースでは、まず、データ品質を向上させる方法や探索的データ分析を行う方法など、データについての議論から始めます。Vertex AI AutoML について確認し、コードを一切記述せずに ML モデルを構築、トレーニング、デプロイする方法を説明します。また、BigQuery ML のメリットを確認します。その後、ML モデルを最適化する方法、一般化とサンプリングを活用してカスタム トレーニング向けに ML モデルの品質を評価する方法を説明します。

詳細

This content is deprecated. Please see the latest version of the course, here.

詳細

Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.

詳細

Google Cloud で機械学習を実装する際のベスト プラクティスには何があるでしょうか。Vertex AI とは何であり、このプラットフォームを使用してコードを 1 行も記述せずに AutoML 機械学習モデルを迅速に構築、トレーニング、デプロイするにはどうすればよいでしょうか。機械学習とはどのようなもので、どのような問題の解決に役立つのでしょうか。 Google では機械学習について独自の視点で考えています。マネージド データセット、特徴量ストア、そしてコードを 1 行も記述せずに迅速に機械学習モデルを構築、トレーニング、デプロイする手段を 1 つにまとめた統合プラットフォームを提供するとともに、データにラベル付けし、TensorFlow、SciKit Learn、Pytorch、R やその他のフレームワークを使用して Workbench ノートブックを作成できるようにすることが、Google の考える機械学習の在り方です。Google の Vertex AI プラットフォームでは、カスタムモデルをトレーニングしたり、コンポーネント パイプラインを構築したりすることもできます。さらに、オンライン予測とバッチ予測の両方を実施できます。このコースでは、候補となるユースケースを機械学習で学習できる形に変換する 5 つのフェーズについても説明し、これらのフェーズを省略しないことが重要である理由について論じます。最後に、機械学習によって増幅される可能性のあるバイアスの認識と、それを識別する方法について説明します。

詳細

このコースでは、生成 AI モデルとのやりとり、ビジネス アイデアのプロトタイプ作成、本番環境へのリリースを行うツールである Vertex AI Studio をご紹介します。現実感のあるユースケースや、興味深い講義、ハンズオンラボを通して、プロンプトの作成から成果の実現に至るまでのライフサイクルを詳細に学び、Gemini マルチモーダル アプリケーションの開発、プロンプトの設計、モデルのチューニングに Vertex AI を活用する方法を学習します。Vertex AI Studio を利用することで、生成 AI をプロジェクトに最大限に活かせるようになることを目指します。

詳細

このコースでは、ディープ ラーニングを使用して画像キャプション生成モデルを作成する方法について学習します。エンコーダやデコーダなどの画像キャプション生成モデルのさまざまなコンポーネントと、モデルをトレーニングして評価する方法を学びます。このコースを修了すると、独自の画像キャプション生成モデルを作成し、それを使用して画像のキャプションを生成できるようになります。

詳細

このコースでは、Transformer アーキテクチャと Bidirectional Encoder Representations from Transformers(BERT)モデルの概要について説明します。セルフアテンション機構をはじめとする Transformer アーキテクチャの主要コンポーネントと、それが BERT モデルの構築にどのように使用されているのかについて学習します。さらに、テキスト分類、質問応答、自然言語推論など、BERT を適用可能なその他のタスクについても学習します。このコースの推定所要時間は約 45 分です。

詳細

このコースでは、機械翻訳、テキスト要約、質問応答などのシーケンス ツー シーケンス タスクに対応する、強力かつ広く使用されている ML アーキテクチャである Encoder-Decoder アーキテクチャの概要を説明します。Encoder-Decoder アーキテクチャの主要なコンポーネントと、これらのモデルをトレーニングして提供する方法について学習します。対応するラボのチュートリアルでは、詩を生成するための Encoder-Decoder アーキテクチャの簡単な実装を、TensorFlow で最初からコーディングします。

詳細

このコースでは、アテンション機構について学習します。アテンション機構とは、ニューラル ネットワークに入力配列の重要な部分を認識させるための高度な技術です。アテンションの仕組みと、アテンションを活用して機械翻訳、テキスト要約、質問応答といったさまざまな ML タスクのパフォーマンスを改善する方法を説明します。

詳細

このコースでは拡散モデルについて説明します。拡散モデルは ML モデル ファミリーの一つで、最近、画像生成分野での有望性が示されました。拡散モデルは物理学、特に熱力学からインスピレーションを得ています。ここ数年、拡散モデルは研究と産業界の両方で広まりました。拡散モデルは、Google Cloud の最先端の画像生成モデルやツールの多くを支える技術です。このコースでは、拡散モデルの背景にある理論と、モデルを Vertex AI でトレーニングしてデプロイする方法について説明します。

詳細

企業における AI と ML の利用が拡大し続けるなか、責任を持ってそれを構築することの重要性も増しています。多くの企業にとっての課題は、責任ある AI と口で言うのは簡単でも、それを実践するのは難しいということです。このコースは、責任ある AI を組織で運用化する方法を学びたい方に最適です。 このコースでは、Google Cloud が責任ある AI を現在どのように運用化しているかを、ベスト プラクティスや教訓と併せて学び、責任ある AI に対する独自のアプローチを構築するためのフレームワークとして活用できるようにします。

詳細

このコースでは、Professional Data Engineer(PDE)認定資格試験に向けた学習計画を作成できます。学習者は、試験の範囲を把握できます。また、試験への準備状況を把握して、個々の学習計画を作成します。

詳細

「Introduction to Generative AI」、「Introduction to Large Language Models」、「Introduction to Responsible AI」の各コースを修了すると、スキルバッジを獲得できます。最終テストに合格することで、ジェネレーティブ AI の基礎概念を理解していることが証明されます。 スキルバッジは、Google Cloud のプロダクトとサービスに関する知識を認定するために Google Cloud が発行するデジタルバッジです。スキルバッジは、ソーシャル メディアの公開プロフィールを作成してそこに追加することで一般向けに共有できます。

詳細

この入門レベルのマイクロラーニング コースでは、責任ある AI の概要と重要性、および Google が責任ある AI を自社プロダクトにどのように実装しているのかについて説明します。また、Google の AI に関する 7 つの原則についても説明します。

詳細

このコースは、大規模言語モデル(LLM)とは何か、どのようなユースケースで活用できるのか、プロンプトのチューニングで LLM のパフォーマンスを高めるにはどうすればよいかについて学習する、入門レベルのマイクロ ラーニング コースです。独自の生成 AI アプリを開発する際に利用できる Google ツールも紹介します。

詳細

この入門レベルのマイクロラーニング コースでは、生成 AI の概要、利用方法、従来の機械学習の手法との違いについて説明します。独自の生成 AI アプリを作成する際に利用できる Google ツールも紹介します。

詳細

このオンデマンド速習コースでは、Google Cloud が提供する包括的で柔軟なインフラストラクチャとプラットフォーム サービスについて紹介します。動画講義、デモ、ハンズオンラボを通してさまざまなソリューションの要素について学び、実際にデプロイしてみます。これにはセキュリティを維持しながらネットワークを相互接続する方法や、ロード バランシング、自動スケーリング、インフラストラクチャの自動化、マネージド サービスも含まれます。

詳細

このコースでは、PCA(Professional Cloud Architect)認定資格試験に向けた学習計画を作成できます。学習者は、試験の範囲を把握できます。また、試験への準備状況を把握して、個々の学習計画を作成します。

詳細

コースより抜粋: 「最善の試験対策は職務に必要なスキルを身に付けることである」このコースではトップダウン アプローチを用いて既知の知識とスキルを把握し、情報とスキルが不十分な分野を特定します。本コースを受講することにより、独自の対策計画を立てることができます。わかっていることとわからないことを明確にし、この職務の担当者に必要なスキルの習得と向上にお役立てください。本コースでは試験ガイドの概要に沿って、受講者が特定の分野と関連する概念を十分に理解しているか、またはさらなる学習が必要かを判断できるように、「判断基準」となる概念を提示します。また、ケース分析、技術的に注意すべきポイントの特定、提案ソリューションの開発などの認知スキルを含む主要な職務スキルについて学び、実践する機会も用意されています。これらは職務スキルであると同時に試験スキルでもあります。また、アクティビティ トラッキング チャレンジラボを使って基礎能力もテストします。試験問題と同じような例題と解答も多数用意されており、コースの最後には採点式ではない模擬試験問題と、受験を想定した採点式の模擬試験問題が含まれています。

詳細

多くの IT 組織では、アジリティを求める開発者と、安定性を重視する運用担当者の間で、インセンティブが調整されていません。サイト信頼性エンジニアリング(SRE)は、Google が開発と運用の間のインセンティブを調整し、ミッション クリティカルな本番環境サポートを行う方法です。SRE の文化的および技術的手法を導入することで、ビジネスと IT の連携を改善できます。このコースでは、Google の SRE の主な手法を紹介し、SRE の組織的な導入を成功させるうえで IT リーダーとビジネス リーダーが果たす重要な役割について説明します。

詳細

アプリケーション デベロッパーは、このコースを通して、Google Cloud のマネージド サービスをシームレスに統合するクラウドネイティブ アプリケーションの設計方法と開発方法を学びます。講義、デモ、ハンズオンラボを通して、アプリケーション開発のベスト プラクティスを適用する方法、さらに、オブジェクト ストレージやリレーショナル データ、キャッシュ保存、分析に適切な Google Cloud ストレージ サービスを使用する方法を学習します。 各ラボのいずれかのバージョンを修了する必要があります。各ラボは Node.js で提供されます。ほとんどの場合、同じラボが Python または Java でも提供されます。各ラボをご希望の言語で修了できます。 これは「Developing Applications with Google Cloud」シリーズの最初のコースです。このコースを修了したら、「Securing and Integrating Components of your Application」コースに登録してください。

詳細

If you want to take your Google Cloud networking skills to the next level, look no further. This course is composed of labs that cover real-life use cases and it will teach you best practices for overcoming common networking bottlenecks. From getting hands-on practice with testing and improving network performance, to integrating high-throughput VPNs and networking tiers, Network Performance and Optimization is an essential course for Google Cloud developers who are looking to double down on application speed and robustness.

詳細

安全な Google Cloud ネットワークの構築コースを修了してスキルバッジを獲得しましょう。このコースでは、Google Cloud でアプリケーションを ビルド、スケール、保護するための複数のネットワーク関連リソースについて学習します。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジです。 インタラクティブなハンズオン環境での知識の応用力を証明するものです。スキルバッジと 最終評価チャレンジラボを完了し、デジタルバッジを獲得して ネットワークで共有しましょう。

詳細

Networking in Google Cloud 日本語版は、6 部構成のコースシリーズです。6 部構成のコースシリーズの最初のコース「Networking in Google Cloud: Fundamentals」へようこそ。  このコースでは、ネットワーキングの基礎、Virtual Private Cloud(VPC)、VPC ネットワークの共有など、ネットワーキングの主なコンセプトに関する包括的な概要を説明します。また、ネットワークのロギング手法とモニタリング手法についても説明します。 

詳細

「Networking in Google Cloud」シリーズの 2 番目のコース「Routing and Addressing」へようこそ。 このコースでは、Google Cloud のネットワーク機能に関連するルーティングとアドレス指定の中核となるコンセプトについて説明します。 モジュール 1 では、Google Cloud でのネットワーク ルーティングとアドレス指定について学習し、IPv4 のルーティング、お客様所有 IP アドレスの使用、Cloud DNS の設定などの主要な構成要素を取り上げることで、基礎知識を身に付けます。モジュール 2 では、プライベート接続のオプションに話題を移し、内部 IP アドレスを使用して Google やその他のサービスにプライベート アクセスするユースケースや手法について説明します。 このコースを修了すると、Google Cloud 内のネットワーク トラフィックを効果的にルーティングおよびアドレス指定する方法をしっかりと把握できるようになります。

詳細

このオンデマンド速習コースでは、Google Cloud で提供される包括的かつ柔軟なインフラストラクチャとプラットフォームのサービスについて、Compute Engine を中心に紹介します。受講者は、動画講義、デモ、ハンズオンラボを通してソリューションの各要素について学習し、演習を行います。これらの要素には、ネットワーク、システム、アプリケーション サービスなどのインフラストラクチャ コンポーネントが含まれます。また、実践的なソリューションの実装も取り上げ、顧客指定の暗号鍵、セキュリティとアクセス管理、割り当てと課金、リソース モニタリングなどについても学習します。

詳細

このオンデマンド速習コースでは、Google Cloud で提供される包括的かつ柔軟なインフラストラクチャとプラットフォームのサービスについて、Compute Engine を中心に紹介します。受講者は、動画講義、デモ、ハンズオンラボを通してさまざまなソリューションの各要素について学習し、実際のデプロイを演習します。これらの要素には、ネットワークや仮想マシン、アプリケーション サービスなどのインフラストラクチャ コンポーネントが含まれます。コンソールと Cloud Shell を使用して Google Cloud を運用する方法についても学習します。また、クラウド アーキテクトの役割、インフラストラクチャ設計の方法、Virtual Private Cloud(VPC)を使用した仮想ネットワークの構成、プロジェクト、ネットワーク、サブネットワーク、IP アドレス、ルート、ファイアウォール ルールについても学習します。

詳細

Google Cloud の基礎: コア インストラクチャ では、Google Cloud に関する重要なコンセプトと用語について説明します。このコースでは動画とハンズオンラボを通じて学習を進めていきます。Google Cloud の多数のコンピューティング サービスとストレージ サービス、そしてリソースとポリシーを管理するための重要なツールについて比較しながら説明します。

詳細

ストリーミングによって企業が事業運営に関するリアルタイムの指標を取得できるようになり、ストリーミング データの処理を行う機会が増えてきました。このコースでは、Google Cloud でストリーミング データ パイプラインを構築する方法について学習します。受信ストリーミング データの処理のために Pub/Sub について説明します。また、このコースでは、Dataflow を使用してストリーミング データの集計や変換を行う方法、処理済みのレコードを分析用に BigQuery や Bigtable に保存する方法についても説明します。さらに、Qwiklabs を使用して Google Cloud でストリーミング データ パイプラインのコンポーネントを構築する実践演習を行います。

詳細

ML をデータ パイプラインに組み込むと、データから分析情報を抽出する能力を向上できます。このコースでは、Google Cloud でデータ パイプラインに ML を含める複数の方法について説明します。カスタマイズがほとんど、またはまったく必要ない場合のために、このコースでは AutoML について説明します。よりカスタマイズされた ML 機能については、Notebooks と BigQuery の機械学習(BigQuery ML)を紹介します。また、Vertex AI を使用して ML ソリューションを本番環境に導入する方法も説明します。

詳細

すべてのデータ パイプラインには、データレイクとデータ ウェアハウスという 2 つの主要コンポーネントがあります。このコースでは、各ストレージ タイプのユースケースを紹介し、Google Cloud で利用可能なデータレイクとデータ ウェアハウスのソリューションを技術的に詳しく説明します。また、データ エンジニアの役割や、効果的なデータ パイプラインが事業運営にもたらすメリットについて確認し、クラウド環境でデータ エンジニアリングを行うべき理由を説明します。 これは「Data Engineering on Google Cloud」シリーズの最初のコースです。このコースを修了したら、「Google Cloud でのバッチデータ パイプラインの構築」コースに登録してください。

詳細

このコースでは、データから AI へのライフサイクルをサポートする Google Cloud のビッグデータと ML のプロダクトやサービスを紹介します。また、Google Cloud で Vertex AI を使用してビッグデータ パイプラインと ML モデルを作成する際のプロセス、課題、メリットについて説明します。

詳細

Welcome to Hybrid Cloud Infrastructure Foundations with Anthos! This is the first course of the Architecting Hybrid Cloud Infrastructure with Anthos path. Anthos enables you to build and manage modern applications, and gives you the freedom to choose where to run them. Anthos gives you one consistent experience in both your on-premises and cloud environments. During this course, you will be presented with modules that will take you through skills that you will use as an architect or administrator running Anthos environments. The modules in this course include videos, hands-on labs, and links to helpful documentation.

詳細

この基礎レベルの クエスト は他の Qwiklabs 製品の中でもユニークです。これらのラボは、Google Cloud Certified Professional Cloud Architect 認定資格試験に出題されるトピックやサービスについて、 IT プロフェッショナルがハンズオンで演習するために作成されました。 IAM からネットワーキング、Kubernetes engine のデプロイまで、Goodle Cloud の知識が試される特定のラボで構成されています。これらのラボでの演習は スキルや能力の向上に役立ちますが、試験ガイドやその他の対策資料も参照することをお勧めします。

詳細

This quest of "Challenge Labs" gives the student preparing for the Google Cloud Certified Professional Cloud Architect certification hands-on practice with common business/technology solutions using Google Cloud architectures. Challenge Labs do not provide the "cookbook" steps, but require solutions to be built with minimal guidance, across many Google Cloud technologies. All labs have activity tracking, and in order to earn this badge you must score 100% in each lab. This quest is not easy and will put your Google Cloud technology skills to the test! Be aware that while practice with these labs will increase your knowledge and abilities, additional study, experience, and background in cloud architecture is recommended to prepare for this certification. Complete this quest to receive an exclusive Google Cloud digital badge.

詳細

このオンデマンド速習コースでは、Google Cloud で提供される包括的かつ柔軟なインフラストラクチャとプラットフォームのサービスについて、Compute Engine を中心に紹介します。受講者は、動画講義、デモ、ハンズオンラボを通してさまざまなソリューションの各要素について学習し、実際のデプロイを演習します。これらの要素には、ネットワークや仮想マシン、アプリケーション サービスなどのインフラストラクチャ コンポーネントが含まれます。コンソールと Cloud Shell を使用して Google Cloud を運用する方法についても学習します。また、クラウド アーキテクトの役割、インフラストラクチャ設計の方法、Virtual Private Cloud(VPC)を使用した仮想ネットワークの構成、プロジェクト、ネットワーク、サブネットワーク、IP アドレス、ルート、ファイアウォール ルールについても学習します。

詳細

このコースでは、Kubernetes と Google Kubernetes Engine(GKE)のセキュリティについて、およびロギングとモニタリングについて学びます。また、Google Cloud マネージド ストレージ サービスとデータベース サービスを GKE 内で使用する方法についても学びます。 これは「Architecting with Google Kubernetes Engine」シリーズの 2 つ目のコースです。このコースを修了したら、「Reliable Google Cloud Infrastructure: Design and Process」コースか、「Hybrid Cloud Infrastructure Foundations with Anthos」コースに登録してください。

詳細

「Architecting with Google Kubernetes Engine: Workloads」を履修することで、クラウドネイティブ アプリケーション開発のすべてを網羅した取り組みに着手することができるようになります。学習体験全体を通して、Kubernetes オペレーション、デプロイ管理、GKE ネットワーキング、永続ストレージについて詳しく学びます。 これは「Architecting with Google Kubernetes Engine」シリーズの最初のコースです。このコースを修了したら、「Architecting with Google Kubernetes Engine: Production」コースに登録してください。

詳細

このコース「Architecting with Google Kubernetes Engine: Foundations」では、Google Cloud の全体像と基本的な考え方を確認した後、ソフトウェア コンテナを作成して管理する方法と Kubernetes のアーキテクチャについて説明します。 これは「Architecting with Google Kubernetes Engine」シリーズの最初のコースです。このコースを修了したら、「Architecting with Google Kubernetes Engine: Workloads」コースに登録してください。

詳細

This course has been updated, please enroll in the new Essential Google Cloud Infrastructure: Foundation.

詳細

このコースでは、実績ある設計パターンを利用して、信頼性と効率に優れたソリューションを Google Cloud で構築する方法を学習します。本コースは、Google Compute Engine を使用した構築 または Google Kubernetes Engine を使用した構築 のコースの続きで、これらのコースで取り上げているテクノロジーの実践経験があることを前提としています。参加者は、講義、設計アクティビティ、ハンズオンラボを通して、ビジネス要件と技術要件を定義し、バランスを取りながら、信頼性、可用性、安全性、費用対効果に優れた Google Cloud のデプロイを設計する方法を学びます。

詳細

このオンデマンド速習コースでは、Google Cloud Platform が提供する包括的で柔軟なインフラストラクチャとプラットフォーム サービスについて紹介します。受講者は、動画講義、デモ、ハンズオンラボを通してソリューションの各要素について学習し、演習を行います。これらの要素には、ネットワーク、システム、アプリケーション サービスなどのインフラストラクチャ コンポーネントが含まれます。また、ネットワークの安全な相互接続、負荷分散、自動スケーリング、インフラストラクチャの自動化、マネージド サービスなど、実用的なソリューションの演習も行います。 受講条件: このコースで効果的に学習するには、次の条件を満たしている必要があります。 • Google Cloud Platform Fundamentals(Core Infrastructure または AWS Professionals)を修了しているか、同等の経験がある ##a dummy change • Essential Cloud Infrastructure: Foundation を修了しているか、同等の経験がある • Essential Cloud Infrastructure: Core Services を修了しているか、同等の経験がある • コマンドライン ツールと Linux オペレーティング システム環境についての基本的なスキルがある • システム運用の経験がある(オンプレミスまたはパブリック クラウド環境でのアプリケーションのデプロイと管理を含む) >>> よくある質問に記載のとおり、このコースに登録すると Qwiklabs の利用規約(https://qwiklabs.com/terms_of_service)に同意したことになります。<<<

詳細

このオンデマンド速習コースでは、Google Cloud で提供される包括的かつ柔軟なインフラストラクチャとプラットフォームのサービスについて、Compute Engine を中心に紹介します。受講者は、動画講義、デモ、ハンズオンラボを通してソリューションの各要素について学習し、演習を行います。これらの要素には、ネットワーク、システム、アプリケーション サービスなどのインフラストラクチャ コンポーネントが含まれます。また、実践的なソリューションの実装も取り上げ、顧客指定の暗号鍵、セキュリティとアクセス管理、割り当てと課金、リソース モニタリングなどについても学習します。

詳細

This content is deprecated. Please see the latest version of the course, here.

詳細