Rejoindre Se connecter

chirag lalwani

Date d'abonnement : 2023

Ligue d'Or

6385 points
Oracle to BigQuery Migration Earned avr. 7, 2024 EDT
Generative AI Fundamentals Earned jan. 7, 2024 EST
Introduction to Image Generation Earned jan. 7, 2024 EST
Introduction to Responsible AI Earned jan. 7, 2024 EST
Introduction to Large Language Models Earned jan. 5, 2024 EST
Introduction to Generative AI Earned jan. 4, 2024 EST
Serverless Data Processing with Dataflow: Foundations Earned mars 24, 2023 EDT
Smart Analytics, Machine Learning, and AI on Google Cloud Earned mars 24, 2023 EDT
Build Streaming Data Pipelines on Google Cloud Earned mars 19, 2023 EDT
Build Batch Data Pipelines on Google Cloud Earned mars 12, 2023 EDT
Build Data Lakes and Data Warehouses on Google Cloud Earned mars 6, 2023 EST
Google Cloud Big Data and Machine Learning Fundamentals Earned mars 5, 2023 EST

Perform a migration from Oracle to BigQuery using SQL Translation and DataFlow using Sample Data. Learners will complete a quiz that focuses on the process of transferring both schema and data from an Oracle enterprise data warehouse to BigQuery.

En savoir plus

Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.

En savoir plus

This course introduces diffusion models, a family of machine learning models that recently showed promise in the image generation space. Diffusion models draw inspiration from physics, specifically thermodynamics. Within the last few years, diffusion models became popular in both research and industry. Diffusion models underpin many state-of-the-art image generation models and tools on Google Cloud. This course introduces you to the theory behind diffusion models and how to train and deploy them on Vertex AI.

En savoir plus

This is an introductory-level microlearning course aimed at explaining what responsible AI is, why it's important, and how Google implements responsible AI in their products. It also introduces Google's 3 AI principles.

En savoir plus

This is an introductory level micro-learning course that explores what large language models (LLM) are, the use cases where they can be utilized, and how you can use prompt tuning to enhance LLM performance. It also covers Google tools to help you develop your own Gen AI apps.

En savoir plus

This is an introductory level microlearning course aimed at explaining what Generative AI is, how it is used, and how it differs from traditional machine learning methods. It also covers Google Tools to help you develop your own Gen AI apps.

En savoir plus

This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.

En savoir plus

Incorporating machine learning into data pipelines increases the ability to extract insights from data. This course covers ways machine learning can be included in data pipelines on Google Cloud. For little to no customization, this course covers AutoML. For more tailored machine learning capabilities, this course introduces Notebooks and BigQuery machine learning (BigQuery ML). Also, this course covers how to productionalize machine learning solutions by using Vertex AI.

En savoir plus

In this course you will get hands-on in order to work through real-world challenges faced when building streaming data pipelines. The primary focus is on managing continuous, unbounded data with Google Cloud products.

En savoir plus

In this intermediate course, you will learn to design, build, and optimize robust batch data pipelines on Google Cloud. Moving beyond fundamental data handling, you will explore large-scale data transformations and efficient workflow orchestration, essential for timely business intelligence and critical reporting. Get hands-on practice using Dataflow for Apache Beam and Serverless for Apache Spark (Dataproc Serverless) for implementation, and tackle crucial considerations for data quality, monitoring, and alerting to ensure pipeline reliability and operational excellence. A basic knowledge of data warehousing, ETL/ELT, SQL, Python, and Google Cloud concepts is recommended.

En savoir plus

While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.

En savoir plus

This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.

En savoir plus