Manuel Gutierrez
Member since 2023
Member since 2023
In this course, you will learn about the various services Google Cloud offers for modernizing retail applications and infrastructure. Through a series of lecture content and hands-on labs, you will gain practical experience deploying cutting-edge retail and ecommerce solutions on Google Cloud.
This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.
Complete the introductory Prompt Design in Vertex AI skill badge to demonstrate skills in the following: prompt engineering, image analysis, and multimodal generative techniques, within Vertex AI. Discover how to craft effective prompts, guide generative AI output, and apply Gemini models to real-world marketing scenarios. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course and the final assessment challenge lab to receive a skill badge that you can share with your network.
This is an introductory level micro-learning course that explores what large language models (LLM) are, the use cases where they can be utilized, and how you can use prompt tuning to enhance LLM performance. It also covers Google tools to help you develop your own Gen AI apps.
This is an introductory level microlearning course aimed at explaining what Generative AI is, how it is used, and how it differs from traditional machine learning methods. It also covers Google Tools to help you develop your own Gen AI apps.
Get hands-on experience applying and building rules for Chronicle. You learn what YARA-L is and how to customize & create event rules.
Learn the technical aspects you need to know about Chronicle and how it can help you detect and action threats.
Learn which Mandiant products directly enhance or augment capabilities provided by Chronicle SIEM and SOAR and how those products integrate into our workflow.
This course will provide you with an overview of SIEM technology to set the stage for the differentiation and expansion of capabilities that Chronicle SIEM provides.
This course will familiarize you with the core functionality of Chronicle, including the user interface, connections, and settings.
This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
Earn a skill badge by completing the Configure your Workplace: Google Workspace for IT Admins quest, where you will get try out the Admin role for Workspace and learn to provision Groups, manage applications, security, and manage Meet. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge quest, and final assessment challenge lab, to receive a digital badge that you can share with your network.
This course helps learners prepare to study for the Professional Google Workspace Administrator Certification exam. Learners will be exposed to and engage with exam topics through a series of readings, diagnostic questions, and knowledge checks. After completing this course, learners will have a personalized workbook that will guide them through the rest of their certification readiness journey.
Planning for a Google Workspace Deployment is the final course in the Google Workspace Administration series. In this course, you will be introduced to Google's deployment methodology and best practices. You will follow Katelyn and Marcus as they plan for a Google Workspace deployment at Cymbal. They'll focus on the core technical project areas of provisioning, mail flow, data migration, and coexistence, and will consider the best deployment strategy for each area. You will also be introduced to the importance of Change Management in a Google Workspace deployment, ensuring that users make a smooth transition to Google Workspace and gain the benefits of work transformation through communications, support, and training. This course covers theoretical topics, and does not have any hands on exercises. If you haven’t already done so, please cancel your Google Workspace trial now to avoid any unwanted charges.
This course equips learners with skills to govern data within their Google Workspace environment. Learners will explore data loss prevention rules in Gmail and Drive to prevent data leakage. They will then learn how to use Google Vault for data retention, preservation, and retrieval purposes. Next, they will learn how to configure data regions and export settings to align with regulations. Finally, learners will discover how to classify data using labels for enhanced organization and security.
This course empowers learners to secure their Google Workspace environment. Learners will implement strong password policies and two-step verification to govern user access. They will then utilize the security investigation tool to proactively identify and respond to security risks. Next, they will manage third-party app access and mobile devices to ensure security. Finally, learners will enforce email security and compliance measures to protect organizational data.
This course was designed to give learners a comprehensive understanding of Google Workspace core services. Learners will explore enabling, disabling, and configuring settings for these services, including Gmail, Calendar, Drive, Meet, Chat, and Docs. Next, they'll learn how to deploy and manage Gemini to empower their users. Finally, learners will examine use cases for AppSheet and Apps Script to automate tasks and extend the functionality of Google Workspace applications.
This course was designed to provide an understanding of user and resource management in Google Workspace. Learners will explore the configuration of organizational units to align with their organization's needs. Additionally, learners will discover how to manage various types of Google Groups. They will also develop expertise in managing domain settings within Google Workspace. Finally, learners will master the optimization and structuring of resources within their Google Workspace environment.
In this introductory-level course, you get hands-on practice with the Google Cloud’s fundamental tools and services. Optional videos are provided to provide more context and review for the concepts covered in the labs. Google Cloud Essentials is a recommendeded first course for the Google Cloud learner - you can come in with little or no prior cloud knowledge, and come out with practical experience that you can apply to your first Google Cloud project. From writing Cloud Shell commands and deploying your first virtual machine, to running applications on Kubernetes Engine or with load balancing, Google Cloud Essentials is a prime introduction to the platform’s basic features.
Complete the intermediate Implement Cloud Security Fundamentals on Google Cloud skill badge to demonstrate skills in the following: creating and assigning roles with Identity and Access Management (IAM); creating and managing service accounts; enabling private connectivity across virtual private cloud (VPC) networks; restricting application access using Identity-Aware Proxy; managing keys and encrypted data using Cloud Key Management Service (KMS); and creating a private Kubernetes cluster. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge course, and final assessment challenge lab, to receive a digital badge that you can share with your network.
Learn to secure your deployments on Google Cloud, including: how to use Cloud Armor bot management to mitigate bot risk and control access from automated clients; use Cloud Armor denylists to restrict or allow access to your HTTP(S) load balancer at the edge of the Google Cloud; apply Cloud Armor security policies to restrict access to cache objects on Cloud CDN and Google Cloud Storage; and mitigate common vulnerabilities using Cloud Armor WAF rules.
Get Anthos Ready. This Google Kubernetes Engine-centric quest of best practice hands-on labs focuses on security at scale when deploying and managing production GKE environments -- specifically role-based access control, hardening, VPC networking, and binary authorization.
Earn a skill badge by completing the Build and Secure Networks in Google Cloud course, where you will learn about multiple networking-related resources to build, scale, and secure your applications on Google Cloud. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge, and final assessment challenge lab, to receive a digital badge that you can share with your network.
This course teaches participants techniques for monitoring and improving infrastructure and application performance in Google Cloud. Using a combination of presentations, demos, hands-on labs, and real-world case studies, attendees gain experience with full-stack monitoring, real-time log management and analysis, debugging code in production, tracing application performance bottlenecks, and profiling CPU and memory usage.
In this self-paced training course, participants learn mitigations for attacks at many points in a Google Cloud-based infrastructure, including Distributed Denial-of-Service attacks, phishing attacks, and threats involving content classification and use. They also learn about the Security Command Center, cloud logging and audit logging, and using Forseti to view overall compliance with your organization's security policies.
This self-paced training course gives participants broad study of security controls and techniques on Google Cloud. Through recorded lectures, demonstrations, and hands-on labs, participants explore and deploy the components of a secure Google Cloud solution, including Cloud Storage access control technologies, Security Keys, Customer-Supplied Encryption Keys, API access controls, scoping, shielded VMs, encryption, and signed URLs. It also covers securing Kubernetes environments.
This self-paced training course gives participants broad study of security controls and techniques on Google Cloud. Through recorded lectures, demonstrations, and hands-on labs, participants explore and deploy the components of a secure Google Cloud solution, including Cloud Identity, Resource Manager, IAM, Virtual Private Cloud firewalls, Cloud Load Balancing, Cloud Peering, Cloud Interconnect, and VPC Service Controls. This is the first course of the Security in Google Cloud series. After completing this course, enroll in the Security Best Practices in Google Cloud course.
Welcome to the second course in the networking and Google Cloud series routing and addressing. In this course, we'll cover the central routing and addressing concepts that are relevant to Google Cloud's networking capabilities. Module one will lay the foundation by exploring network routing and addressing in Google Cloud, covering key building blocks such as routing IPv4, bringing your own IP addresses and setting up cloud DNS. In Module two will shift our focus to private connection options, exploring use cases and methods for accessing Google and other services privately using internal IP addresses. By the end of this course, you'll have a solid grasp of how to effectively route and address your network traffic within Google Cloud.
Networking in Google cloud is a 6 part course series. Welcome to the first course of our six part course series, Networking in Google Cloud: Fundamentals. This course provides a comprehensive overview of core networking concepts, including networking fundamentals, virtual private clouds (VPCs), and the sharing of VPC networks. Additionally, the course covers network logging and monitoring techniques.
This course helps learners prepare for the Professional Cloud Security Engineer (PCSE) Certification exam. Learners will be exposed to and engage with exam topics through a series of lectures, diagnostic questions, and knowledge checks. After completing this course, learners will have a personalized workbook that will guide them through the rest of their certification readiness journey.
Data pipelines typically fall under one of the Extract and Load (EL), Extract, Load and Transform (ELT) or Extract, Transform and Load (ETL) paradigms. This course describes which paradigm should be used and when for batch data. Furthermore, this course covers several technologies on Google Cloud for data transformation including BigQuery, executing Spark on Dataproc, pipeline graphs in Cloud Data Fusion and serverless data processing with Dataflow. Learners get hands-on experience building data pipeline components on Google Cloud using Qwiklabs.
The two key components of any data pipeline are data lakes and warehouses. This course highlights use-cases for each type of storage and dives into the available data lake and warehouse solutions on Google Cloud in technical detail. Also, this course describes the role of a data engineer, the benefits of a successful data pipeline to business operations, and examines why data engineering should be done in a cloud environment. This is the first course of the Data Engineering on Google Cloud series. After completing this course, enroll in the Building Batch Data Pipelines on Google Cloud course.
This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.
Complete the introductory Implementing Cloud Load Balancing for Compute Engine skill badge to demonstrate skills in the following: creating and deploying virtual machines in Compute Engine and configuring network and application load balancers.
Complete the introductory Prepare Data for ML APIs on Google Cloud skill badge to demonstrate skills in the following: cleaning data with Dataprep by Trifacta, running data pipelines in Dataflow, creating clusters and running Apache Spark jobs in Dataproc, and calling ML APIs including the Cloud Natural Language API, Google Cloud Speech-to-Text API, and Video Intelligence API. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course, and the final assessment challenge lab, to receive a skill badge that you can share with your network.
Good news! There’s a new updated version of this learning path available for you!Open the new Professional Cloud Architect Certification Learning Path to begin, once you’ve selected the new path all your current progress will be reflected in the new version.
In this course, you'll learn about Kubernetes and Google Kubernetes Engine (GKE) security; logging and monitoring; and using Google Cloud managed storage and database services from within GKE. This is the second course of the Architecting with Google Kubernetes Engine series. After completing this course, enroll in the Reliable Google Cloud Infrastructure: Design and Process course or the Hybrid Cloud Infrastructure Foundations with Anthos course.
Earn a skill badge by completing the Cloud Architecture: Design, Implement, and Manage to demonstrate skills in the following: deploy a publicly accessible website using Apache web servers, configure a Compute Engine VM using startup scripts, configure secure RDP using a Windows Bastion host and firewall rules, build and deploy a Docker image to a Kubernetes cluster and then update it, and create a CloudSQL instance and import a MySQL database. This skill badge is a great resource for understanding topics that will appear in the Google Cloud Certified Professional Cloud Architect certification exam.
Complete the intermediate Optimize Costs for Google Kubernetes Engine skill badge to demonstrate skills in the following: creating and managing multi-tenant clusters, monitoring resource usage by namespace, configuring cluster and pod autoscaling for efficiency, setting up load balancing for optimal resource distribution, and implementing liveness and readiness probes to ensure application health and cost-effectiveness. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course and the final assessment challenge lab to receive a skill badge that you can share with your network.
Earn a skill badge by completing the Set Up a Google Cloud Network course, where you will learn how to perform basic networking tasks on Google Cloud Platform - create a custom network, add subnets firewall rules, then create VMs and test the latency when they communicate with each other. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge, and final assessment challenge lab, to receive a digital badge that you can share with your network.
Complete the intermediate Build Infrastructure with Terraform on Google Cloud skill badge to demonstrate skills in the following: Infrastructure as Code (IaC) principles using Terraform, provisioning and managing Google Cloud resources with Terraform configurations, effective state management (local and remote), and modularizing Terraform code for reusability and organization.
Earn a skill badge by completing the Develop your Google Cloud Network course, where you learn multiple ways to deploy and monitor applications including how to: explore IAM rols and add/remove project access, create VPC networks, deploy and monitor Compute Engine VMs, write SQL queries, deploy and monitor VMs in Compute Engine, and deploy applications using Kubernetes with multiple deployment approaches. A skill badge is an exclusivedigital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge, and the final assessment challenge lab, to receive a skill badge that you can share with your network.
Earn a skill badge by completing the Set Up an App Dev Environment on Google Cloud course, where you learn how to build and connect storage-centric cloud infrastructure using the basic capabilities of the of the following technologies: Cloud Storage, Identity and Access Management, Cloud Functions, and Pub/Sub. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge, and the final assessment challenge lab, to receive a skill badge that you can share with your network.
This course equips students to build highly reliable and efficient solutions on Google Cloud using proven design patterns. It is a continuation of the Architecting with Google Compute Engine or Architecting with Google Kubernetes Engine courses and assumes hands-on experience with the technologies covered in either of those courses. Through a combination of presentations, design activities, and hands-on labs, participants learn to define and balance business and technical requirements to design Google Cloud deployments that are highly reliable, highly available, secure, and cost-effective.
This course teaches participants techniques for monitoring and improving infrastructure and application performance in Google Cloud. Using a combination of presentations, demos, hands-on labs, and real-world case studies, attendees gain experience with full-stack monitoring, real-time log management and analysis, debugging code in production, tracing application performance bottlenecks, and profiling CPU and memory usage.
In this course, you'll learn about Kubernetes and Google Kubernetes Engine (GKE) security; logging and monitoring; and using Google Cloud managed storage and database services from within GKE. This is the second course of the Architecting with Google Kubernetes Engine series. After completing this course, enroll in the Reliable Google Cloud Infrastructure: Design and Process course or the Hybrid Cloud Infrastructure Foundations with Anthos course.
In "Architecting with Google Kubernetes Engine- Workloads", you'll embark on a comprehensive journey into cloud-native application development. Throughout the learning experience, you'll explore Kubernetes operations, deployment management, GKE networking, and persistent storage. This is the first course of the Architecting with Google Kubernetes Engine series. After completing this course, enroll in the Architecting with Google Kubernetes Engine- Production course.
In this course, "Architecting with Google Kubernetes Engine: Foundations," you get a review of the layout and principles of Google Cloud, followed by an introduction to creating and managing software containers and an introduction to the architecture of Kubernetes. This is the first course of the Architecting with Google Kubernetes Engine series. After completing this course, enroll in the Architecting with Google Kubernetes Engine: Workloads course.
Welcome to the Getting Started with Google Kubernetes Engine course. If you're interested in Kubernetes, a software layer that sits between your applications and your hardware infrastructure, then you’re in the right place! Google Kubernetes Engine brings you Kubernetes as a managed service on Google Cloud. The goal of this course is to introduce the basics of Google Kubernetes Engine, or GKE, as it’s commonly referred to, and how to get applications containerized and running in Google Cloud. The course starts with a basic introduction to Google Cloud, and is then followed by an overview of containers and Kubernetes, Kubernetes architecture, and Kubernetes operations.
This accelerated on-demand course introduces participants to the comprehensive and flexible infrastructure and platform services provided by Google Cloud. Through a combination of video lectures, demos, and hands-on labs, participants explore and deploy solution elements, including securely interconnecting networks, load balancing, autoscaling, infrastructure automation and managed services.
This accelerated on-demand course introduces participants to the comprehensive and flexible infrastructure and platform services provided by Google Cloud with a focus on Compute Engine. Through a combination of video lectures, demos, and hands-on labs, participants explore and deploy solution elements, including infrastructure components such as networks, systems and applications services. This course also covers deploying practical solutions including customer-supplied encryption keys, security and access management, quotas and billing, and resource monitoring.
This accelerated on-demand course introduces participants to the comprehensive and flexible infrastructure and platform services provided by Google Cloud with a focus on Compute Engine. Through a combination of video lectures, demos, and hands-on labs, participants explore and deploy solution elements, including infrastructure components such as networks, virtual machines and applications services. You will learn how to use the Google Cloud through the console and Cloud Shell. You'll also learn about the role of a cloud architect, approaches to infrastructure design, and virtual networking configuration with Virtual Private Cloud (VPC), Projects, Networks, Subnetworks, IP addresses, Routes, and Firewall rules.
Google Cloud Fundamentals: Core Infrastructure introduces important concepts and terminology for working with Google Cloud. Through videos and hands-on labs, this course presents and compares many of Google Cloud's computing and storage services, along with important resource and policy management tools.
This course helps learners create a study plan for the PCA (Professional Cloud Architect) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.