NotebookLM is an AI-powered collaborator that helps you do your best thinking. After uploading your documents, NotebookLM becomes an instant expert in those sources so you can read, take notes, and collaborate with it to refine and organize your ideas. NotebookLM Pro gives you everything already included with NotebookLM, as well as higher utilization limits, access to premium features, and additional sharing options and analytics.
Complete the Configure AI Applications to optimize search results skill badge to demonstrate your proficiency in configuring search results from AI Applications. You will be tasked with implementing search serving controls to boost and bury results, filter entries from search results and display metadata in your search interface. Please note that AI Applications was previously named Agent Builder, so you may encounter this older name within the lab content. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!
Complete the Extend agent functionality with Webhooks, Tools, and Integrations skill badge to demonstrate your ability to let conversational agents take actions. You will create a flow that calls a webhook and a playbook with a tool and combine them into a hybrid agent. You'll also prepare custom payload for rich content experiences in the Conversational Messenger. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!
Complete the Leverage best practices for developing, operating, and securing production-grade Conversational Agents skill badge to demonstrate your ability to implement a variety of best practices around development, deployment, and security. These will include: Using versions and environments, backing up with Git integration, leveraging test cases and CI/CD testing, tracking conversations with conversation history and logging, redacting data, and securing acceess to agent and webhook endpoints. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have develope…
This course will equip you with the tools to develop complex conversational experiences in Conversational Agents using best practices to create production-ready agents.
Do you want to keep your users engaged by suggesting content they'll love? This course equips you with the skills to build a cutting-edge recommendations app using your own data with no prior machine learning knowledge. You learn to leverage AI Applications to build recommendation applications so that audiences can discover more personalized content, like what to watch or read next, with Google-quality results customized using optimization objectives.
If you've worked with data, you know that some data is more reliable than other data. In this course, you'll learn a variety of techniques to present the most reliable or useful results to your users. Create serving controls to boost or bury search results. Rank search results to ensure that each query is answered by the most relevant data. If needed, tune your search engine. Learn to measure search results to ensure your search applications deliver the best possible results to each user.
AI Applications provides built-in analytics for your Vertex AI Search and Google Agentspace apps. Learn what metrics are tracked and how to view them in this course.
This course explores the fundamentals of the feedback loop process for Conversational Agent development and introduces the native capabilities within Conversational Agents that support it. Please note Dialogflow CX was recently renamed to Conversational Agents, Virtual agent renamed to Conversational Agent, and CCAI Insights were renamed to Conversational Insights, and this course is in the process of being updated to reflect the new product names for Dialogflow CX, Virtual Agent, and CCAI Insights.
Initial deployment of Vertex AI Search and Google Agentspace apps takes only a few clicks, but getting the configurations right can elevate a deployment from a basic off-the-shelf app to an excellent custom search or recommendations experience. In this course, you'll learn more about the many ways you can customize and improve search, recommendations, and Google Agentspace apps.
Complete the Create and maintain Vertex AI Search data stores skill badge to demonstrate your proficiency in building various types of data stores used in Vertex AI Search applications. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!
Data stores represent a simple way to make content available to many types of generative AI applications, including search applications, recommendations engines, Google Agentspace apps, Agent Development Kit agents, and apps built with Google Gen AI or LangChain SDKs. Connect data from many sources include Cloud Storage, Google Drive, chat apps, mail apps, ticketing systems, third-party file storage providers, Salesforce, and many more.
Complete the Build search and recommendations AI Applications skill badge to demonstrate your proficiency in deploying search and recommendation applications through AI Applications. Additionally, emphasis is placed on constructing a tailored Q&A system utilizing data stores. Please note that AI Applications was previously named Agent Builder, so you may encounter this older name within the lab content. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!
This course introduces AI Applications. You will learn about the types of apps that you can create using AI Applications, the high-level steps that its data stores automate for you, and what advanced features can be enabled for Search apps.
In this course, you will learn about advanced methods and tools to monitor the performance of your Conversational agent in Conversational Agents. Please note Dialogflow CX was recently renamed to Conversational Agents and this course is in the process of being updated to reflect the new product name for Dialogflow CX.
In this course you will learn the key architectural considerations that need to be taken into account when designing for the implementation of Conversational AI solutions. Please note Dialogflow CX was recently renamed to Conversational Agents and CCAI Insights was renamed to Conversational Insights.
Complete the Analyze patterns in conversational data with Conversational Insights skill badge to demonstrate your proficiency in analysing customer conversations with Conversational Insights. After completing this challenge, you will be ready to deploy Conversation Insights to improve customer service performance, and create better customer experiences. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!
In this course you will learn how to leverage Conversational Insights to uncover hidden information from your contact center data to increase operational efficiency and drive data-driven business decisions. Please note Contact Center AI Insights were recently renamed to Conversational Insights, and this course is in the process of being updated to reflect the new product name for Contact Center AI Insights.
Complete the Improve customer and agent satisfaction with Agent Assist skill badge to demonstrate your proficiency in configuring basic conversational agents that can escalate actions to human agents, and configuring Agent Assist to help human agents with customer queries. You prove your knowledge in configuring Generators for summarization, classification and recommendation of tickets as well leverage tools such as Generative Knowledge Assist, to provide further context to human agents. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!
In this course you will learn how Agent Assist can enhance the productivity of human agents while interacting with customers through the chat channel.
In this course you will learn how Conversational AI Agent Assist can help distill complex customer interactions into concise and clear summaries. Please note Dialogflow CX was recently renamed to Conversational Agents, Virtual agent renamed to Conversational agent, and CCAI Insights were renamed to Conversational Insights, and this course is in the process of being updated to reflect the new product names for Dialogflow CX, and Virtual Agent, CCAI Insights.
In this course you will learn how Agent Assist can enhance the productivity of human agents while interacting with customers through the voice channel, as well as the options available for integration with other platforms in the Conversational AI ecosystem.
Learn about building conversational AI voice and chat integrations, including how telephony systems can connect with Google to enable phone-based interactions within the Conversational AI ecosystem. Explore key topics such as the differences between chat and voice conversations, the writing process for creating conversation scripts, and the beginning of the interrogative series and closing sequence.
Connect Conversational Agents to external systems and APIs to expand what agents can do, designing an end-to-end system that is resilient, fault-tolerant and secure.
Complete the Build basic Conversational Agents with Playbooks and Flows skill badge to demonstrate your proficiency in building virtual agents using traditional NLU and generative-based features. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!
In this course, you'll learn to develop generative agents that answer questions using websites, documents, or structured data. You will explore Vertex AI Applications and understand the advantages of data store agents, including their scalability and security. You'll learn about different data store types and also discover how to connect data stores to agents and add personalization for enhanced responses. Finally, you'll gain insights into common search configurations and troubleshooting techniques.
Explore the Generative AI features for Conversational Agents and how to incorporate them into stateful Flows. Discover the possibilities with Generators, Generative Fallback, and Data Stores, as well as best practices and security settings for using these features.
Discover flows in Conversational Agents and learn how to build deterministic chat and voice experiences with language models. Explore key concepts like drivers, intents, and entities, and how to use them to create conversational agents.
Explore Playbooks and their implementation of the ReAct pattern for building Conversational Agents. You will learn how to construct a Playbook, set up goals and instructions to build a chatbot in natural language, and learn to test and deploy your solution.
This course explores the different products and capabilities of Customer Engagement Suite (CES) and Conversational agents. Additionally, it covers the foundational principles of conversation design to craft engaging and effective experiences that emulate human-like experiences specific to the Chat channel.
IA generativa: para além do chatbot é o primeiro curso do programa de aprendizado de liderança em IA generativa e não tem pré-requisitos. Este curso tem como objetivo ir além do conhecimento básico de chatbots para explorar o verdadeiro potencial da IA generativa para sua organização. Você aprenderá conceitos como modelos de fundação e engenharia de comando, que são cruciais para aproveitar o poder da IA generativa. O curso também aborda considerações importantes ao desenvolver uma estratégia de IA generativa de sucesso para a organização.
Este curso ajuda a criar um plano de estudo para o exame de certificação Professional Machine Learning Engineer (PMLE). É possível conferir a amplitude e o escopo dos domínios abordados no exame. Os estudantes também podem acompanhar os preparativos para o exame e criar planos de estudo individuais.
Conclua o selo de habilidade intermediário Dados de engenharia para modelagem preditiva com o BigQuery ML para mostrar que você sabe: criar pipelines de transformação de dados no BigQuery usando o Dataprep by Trifacta; usar o Cloud Storage, o Dataflow e o BigQuery para criar fluxos de trabalho de extração, transformação e carregamento de dados (ELT); e criar modelos de machine learning usando o BigQuery ML. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Cloud e comprovam sua habilidade de aplicar seu conhecimento em um ambiente prático e interativo. Conclua o curso com selo de habilidade e o laboratório com desafio da avaliação final para receber um selo digital que pode ser compartilhado com sua rede.
Conclua o selo de habilidade intermediário Criar modelos de ML com o BigQuery ML para mostrar que você sabe: criar e avaliar modelos de machine learning usando o BigQuery ML para fazer previsões de dados. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Cloud e comprovam a habilidade de aplicar seu conhecimento em um ambiente prático e interativo. Conclua este curso e o laboratório com desafio da avaliação final para receber um selo de habilidade que pode ser compartilhado com seus contatos.
Conquiste o selo de habilidade introdutório Preparar dados para APIs de ML no Google Cloud para demonstrar que você é capaz de: limpar dados com o Dataprep by Trifacta, executar pipelines de dados no Dataflow, criar clusters e executar jobs do Apache Spark no Dataproc e chamar APIs de ML, incluindo as APIs Cloud Natural Language, Google Cloud Speech-to-Text e Video Intelligence. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Google Cloud e testam sua habilidade de aplicar esse conhecimento em um ambiente prático e interativo. Conclua este curso com selo de habilidade e o laboratório com desafio da avaliação final para receber um selo digital que pode ser compartilhado nas suas redes sociais e currículo.
Conquiste o selo de habilidade intermediário ao concluir o curso Como criar e implantar soluções de machine learning na Vertex AI. Nele você aprenderá a usar a plataforma Vertex AI, o AutoML e os serviços de treinamento personalizados para treinar, avaliar, ajustar, explicar e implantar modelos de machine learning. Esse curso com selo de habilidade é destinado a cientistas de dados e engenheiros de machine learning. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Cloud e comprovam sua habilidade de aplicar seu conhecimento em um ambiente prático e interativo. Conclua o curso com selo de habilidade e o laboratório com desafio da avaliação final para receber um selo digital que pode ser compartilhado com sua rede.
Neste curso, vamos conhecer os componentes e as práticas recomendadas para criar sistemas de ML com alto desempenho em ambientes de produção. Vamos abordar algumas considerações comuns relacionadas à criação desses sistemas, como treinamento estático e dinâmico, inferência estática e dinâmica, TensorFlow distribuído e TPUs. O objetivo deste curso é conhecer as características de um sistema de ML eficiente, que vão muito além da capacidade de fazer boas previsões.
Este curso apresenta tópicos importantes sobre privacidade e segurança da IA. Ele também aborda recursos e métodos úteis para implementar práticas recomendadas de privacidade e segurança da IA com o uso de produtos do Google Cloud e ferramentas de código aberto.
Neste curso, os participantes vão conhecer as ferramentas de MLOps e as práticas recomendadas para a implantação, a avaliação, o monitoramento e a operação de sistemas de ML de produção no Google Cloud. MLOps é uma disciplina com foco na implantação, no teste, no monitoramento e na automação de sistemas de ML em produção. Profissionais de engenharia de machine learning usam ferramentas para fazer melhorias contínuas e avaliações de modelos implantados. São profissionais que trabalham com ciências de dados e desenvolvem modelos para garantir a velocidade e o rigor na implantação de modelos com melhor desempenho.
Neste curso, os participantes vão conhecer as ferramentas de MLOps e as práticas recomendadas para a implantação, a avaliação, o monitoramento e a operação de sistemas de ML de produção no Google Cloud. MLOps é uma disciplina com foco na implantação, teste, monitoramento e automação de sistemas de ML em produção. Também incluímos experiências práticas de uso da ingestão de streaming do Vertex AI Feature Store na camada do SDK.
Este curso é uma introdução aos Notebooks da Vertex AI, que são ambientes baseados em notebooks do Jupyter. Eles fornecem uma plataforma unificada para todo o fluxo de trabalho de machine learning, desde a preparação de dados até a implantação e monitoramento de modelos. Tópicos do curso: (1) Diferentes tipos de Notebooks da Vertex AI e os recursos deles e (2) Como criar e gerenciar Notebooks da Vertex AI.
Neste curso, apresentamos conceitos de IA responsável e princípios de IA. Ele contém técnicas para identificar e reduzir o viés e aplicar a imparcialidade nas práticas de ML/IA. Vamos abordar ferramentas e métodos práticos para implementar as práticas recomendadas de IA responsável usando produtos do Google Cloud e ferramentas de código aberto.
O curso apresenta os benefícios de usar a Vertex AI Feature Store e ensina a melhorar a acurácia dos modelos de ML e a identificar as colunas de dados que apresentam os atributos mais úteis. Ele também oferece conteúdo teórico e laboratórios sobre engenharia de atributos com BigQuery ML, Keras e TensorFlow.
Neste curso, apresentamos os conceitos de interpretabilidade e transparência em IA. Vamos abordar a importância da transparência em IA para desenvolvedores e engenheiros. O curso também abrange ferramentas e métodos práticos para ajudar a alcançar a interpretabilidade e a transparência em dados e modelos de IA.
Os aplicativos de IA generativa proporcionam novas experiências de usuário que eram quase impossíveis antes da invenção dos modelos de linguagem grandes (LLMs). Ao desenvolver aplicativos, como você pode usar a IA generativa para criar apps potentes e interativos no Google Cloud? Neste curso, você vai conhecer os aplicativos de IA generativa e aprender a usar o design de comandos e a geração aumentada de recuperação (RAG) para criar apps avançados com a ajuda dos LLMs. Você também vai saber o que é a arquitetura pronta para produção, usada nos aplicativos de IA generativa, e vai criar um aplicativo de chat com base em RAG e LLM.
Este é um curso de microlearning de nível introdutório que explica o que são modelos de linguagem grandes (LLM), os casos de uso em que podem ser aplicados e como é possível fazer o ajuste de comandos para aprimorar o desempenho dos LLMs. O curso também aborda as ferramentas do Google que ajudam a desenvolver seus próprios apps de IA generativa.
Neste curso, profissionais de machine learning vão conhecer as principais ferramentas, técnicas e práticas recomendadas para avaliar modelos de IA generativa e preditiva. Essa avaliação é muito importante para garantir que os sistemas de ML produzam resultados confiáveis, precisos e de alto desempenho na produção. Os participantes vão entender em detalhes as várias métricas e metodologias de avaliação, além da aplicação correta delas em diferentes tarefas e tipos de modelo. O foco do curso está nos desafios específicos dos modelos de IA generativa e nas estratégias para lidar com eles de forma eficaz. Usando a plataforma Vertex AI do Google Cloud, os participantes vão aprender a implementar processos robustos de avaliação para selecionar e otimizar os modelos, com monitoramento contínuo.
Este é um curso de microaprendizagem introdutório que busca explicar a IA generativa: o que é, como é usada e por que ela é diferente de métodos tradicionais de machine learning. O curso também aborda as ferramentas do Google que ajudam você a desenvolver apps de IA generativa.
O objetivo desse curso é equipar você com o conhecimento e as ferramentas necessários para resolver os desafios enfrentados por equipes de MLOps durante o desenvolvimento e gerenciamento de modelos de IA generativa. Também queremos mostrar como a Vertex AI ajuda equipes de IA a simplificar processos de MLOps e a alcançar o sucesso em projetos de IA generativa.
Este curso ensina a criar modelos de ML com o TensorFlow e o Keras, melhorar a acurácia deles e desenvolver modelos para uso em escala.
Neste curso, apresentamos os recursos de IA e machine learning (ML) no Google Cloud que criam projetos de IA generativa e preditiva. Vamos conhecer as tecnologias, os produtos e as ferramentas disponíveis em todo o ciclo de vida de dados à IA, o que inclui os fundamentos dessa tecnologia, o desenvolvimento e as soluções dela. O objetivo é ajudar cientistas de dados, desenvolvedores de IA e engenheiros de ML a aprimorar habilidades e o conhecimento com experiências de aprendizado envolventes e exercícios práticos.