Join Sign in

Vedanth V

Member since 2025

Diamond League

72373 points
Introduction to NotebookLM Earned أغسطس 8, 2025 EDT
Configure AI Applications to optimize search results Earned أغسطس 8, 2025 EDT
Extend virtual agents with webhooks, tools, and Messenger integration Earned أغسطس 7, 2025 EDT
Leverage best practices for developing, operating, and securing production-grade Conversational Agents Earned أغسطس 7, 2025 EDT
Build Production-Ready Conversational Agents Earned أغسطس 7, 2025 EDT
Recommendations with AI Applications Earned يوليو 30, 2025 EDT
Improve Vertex AI Search and Google Agentspace Search Results Earned يوليو 29, 2025 EDT
Vertex AI Search and Google Agentspace Analytics Earned يوليو 29, 2025 EDT
Basic Performance Measurement Earned يوليو 29, 2025 EDT
Vertex AI Search and Google Agentspace UI Configurations Earned يوليو 29, 2025 EDT
Create and maintain Vertex AI Search data stores Earned يوليو 29, 2025 EDT
Create Data Stores for Gen AI Applications Earned يوليو 29, 2025 EDT
Build search and recommendations applications with AI Applications Earned يوليو 29, 2025 EDT
Introduction to AI Applications Earned يوليو 29, 2025 EDT
Advanced Performance Measurement Earned يوليو 28, 2025 EDT
Customer Engagement Suite with Google AI Architecture Earned يوليو 28, 2025 EDT
Analyze patterns in conversational data with Conversational Insights Earned يوليو 28, 2025 EDT
Conversational Insights Earned يوليو 28, 2025 EDT
Improve customer and agent satisfaction with Agent Assist Earned يوليو 28, 2025 EDT
Introduction to Agent Assist and its GenAI Capabilities Earned يوليو 28, 2025 EDT
Agent Summarization (Custom) Earned يوليو 25, 2025 EDT
Integrate Agent Assist with Telephony and Chatbot Systems Earned يوليو 25, 2025 EDT
Conversational AI Voice and Chat Integrations Earned يوليو 25, 2025 EDT
Extend Conversational Agents Functionality with Webhooks and Tools Earned يوليو 23, 2025 EDT
Build basic Conversational Agents with Playbooks and Flows Earned يوليو 22, 2025 EDT
Virtual FAQ with data store agents Earned يوليو 22, 2025 EDT
Incorporate Generative Features into Conversational Agent flows Earned يوليو 22, 2025 EDT
Stateful Flows Earned يوليو 22, 2025 EDT
Generative Playbooks Earned يوليو 22, 2025 EDT
Introduction to CES and Conversational Agents Earned يوليو 17, 2025 EDT
Gen AI: Beyond the Chatbot Earned يونيو 18, 2025 EDT
Professional Machine Learning Engineer Study Guide Earned مايو 23, 2025 EDT
Engineer Data for Predictive Modeling with BigQuery ML Earned مايو 23, 2025 EDT
Create ML Models with BigQuery ML Earned مايو 23, 2025 EDT
Prepare Data for ML APIs on Google Cloud Earned مايو 22, 2025 EDT
Build and Deploy Machine Learning Solutions on Vertex AI Earned مايو 22, 2025 EDT
Production Machine Learning Systems Earned مايو 22, 2025 EDT
Responsible AI for Developers: Privacy & Safety Earned مايو 21, 2025 EDT
Machine Learning Operations (MLOps): Getting Started Earned مايو 21, 2025 EDT
Machine Learning Operations (MLOps) with Vertex AI: Manage Features Earned مايو 21, 2025 EDT
Working with Notebooks in Vertex AI Earned مايو 21, 2025 EDT
Responsible AI for Developers: Fairness & Bias Earned مايو 21, 2025 EDT
Feature Engineering Earned مايو 21, 2025 EDT
Responsible AI for Developers: Interpretability & Transparency Earned مايو 20, 2025 EDT
Create Generative AI Apps on Google Cloud Earned مايو 20, 2025 EDT
Introduction to Large Language Models Earned مايو 18, 2025 EDT
Machine Learning Operations (MLOps) with Vertex AI: Model Evaluation Earned مايو 18, 2025 EDT
Introduction to Generative AI Earned مايو 18, 2025 EDT
Machine Learning Operations (MLOps) for Generative AI Earned مايو 18, 2025 EDT
Build, Train and Deploy ML Models with Keras on Google Cloud Earned مايو 13, 2025 EDT
Introduction to AI and Machine Learning on Google Cloud Earned مارس 24, 2025 EDT

NotebookLM is an AI-powered collaborator that helps you do your best thinking. After uploading your documents, NotebookLM becomes an instant expert in those sources so you can read, take notes, and collaborate with it to refine and organize your ideas. NotebookLM Pro gives you everything already included with NotebookLM, as well as higher utilization limits, access to premium features, and additional sharing options and analytics.

Learn more

Complete the Configure AI Applications to optimize search results skill badge to demonstrate your proficiency in configuring search results from AI Applications. You will be tasked with implementing search serving controls to boost and bury results, filter entries from search results and display metadata in your search interface. Please note that AI Applications was previously named Agent Builder, so you may encounter this older name within the lab content. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!

Learn more

Complete the Extend agent functionality with Webhooks, Tools, and Integrations skill badge to demonstrate your ability to let conversational agents take actions. You will create a flow that calls a webhook and a playbook with a tool and combine them into a hybrid agent. You'll also prepare custom payload for rich content experiences in the Conversational Messenger. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!

Learn more

Complete the Leverage best practices for developing, operating, and securing production-grade Conversational Agents skill badge to demonstrate your ability to implement a variety of best practices around development, deployment, and security. These will include: Using versions and environments, backing up with Git integration, leveraging test cases and CI/CD testing, tracking conversations with conversation history and logging, redacting data, and securing acceess to agent and webhook endpoints. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have develope…

Learn more

This course will equip you with the tools to develop complex conversational experiences in Conversational Agents using best practices to create production-ready agents.

Learn more

Do you want to keep your users engaged by suggesting content they'll love? This course equips you with the skills to build a cutting-edge recommendations app using your own data with no prior machine learning knowledge. You learn to leverage AI Applications to build recommendation applications so that audiences can discover more personalized content, like what to watch or read next, with Google-quality results customized using optimization objectives.

Learn more

If you've worked with data, you know that some data is more reliable than other data. In this course, you'll learn a variety of techniques to present the most reliable or useful results to your users. Create serving controls to boost or bury search results. Rank search results to ensure that each query is answered by the most relevant data. If needed, tune your search engine. Learn to measure search results to ensure your search applications deliver the best possible results to each user.

Learn more

AI Applications provides built-in analytics for your Vertex AI Search and Google Agentspace apps. Learn what metrics are tracked and how to view them in this course.

Learn more

This course explores the fundamentals of the feedback loop process for Conversational Agent development and introduces the native capabilities within Conversational Agents that support it. Please note Dialogflow CX was recently renamed to Conversational Agents, Virtual agent renamed to Conversational Agent, and CCAI Insights were renamed to Conversational Insights, and this course is in the process of being updated to reflect the new product names for Dialogflow CX, Virtual Agent, and CCAI Insights.

Learn more

Initial deployment of Vertex AI Search and Google Agentspace apps takes only a few clicks, but getting the configurations right can elevate a deployment from a basic off-the-shelf app to an excellent custom search or recommendations experience. In this course, you'll learn more about the many ways you can customize and improve search, recommendations, and Google Agentspace apps.

Learn more

Complete the Create and maintain Vertex AI Search data stores skill badge to demonstrate your proficiency in building various types of data stores used in Vertex AI Search applications. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!

Learn more

Data stores represent a simple way to make content available to many types of generative AI applications, including search applications, recommendations engines, Google Agentspace apps, Agent Development Kit agents, and apps built with Google Gen AI or LangChain SDKs. Connect data from many sources include Cloud Storage, Google Drive, chat apps, mail apps, ticketing systems, third-party file storage providers, Salesforce, and many more.

Learn more

Complete the Build search and recommendations AI Applications skill badge to demonstrate your proficiency in deploying search and recommendation applications through AI Applications. Additionally, emphasis is placed on constructing a tailored Q&A system utilizing data stores. Please note that AI Applications was previously named Agent Builder, so you may encounter this older name within the lab content. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!

Learn more

This course introduces AI Applications. You will learn about the types of apps that you can create using AI Applications, the high-level steps that its data stores automate for you, and what advanced features can be enabled for Search apps.

Learn more

In this course, you will learn about advanced methods and tools to monitor the performance of your Conversational agent in Conversational Agents. Please note Dialogflow CX was recently renamed to Conversational Agents and this course is in the process of being updated to reflect the new product name for Dialogflow CX.

Learn more

In this course you will learn the key architectural considerations that need to be taken into account when designing for the implementation of Conversational AI solutions. Please note Dialogflow CX was recently renamed to Conversational Agents and CCAI Insights was renamed to Conversational Insights.

Learn more

Complete the Analyze patterns in conversational data with Conversational Insights skill badge to demonstrate your proficiency in analysing customer conversations with Conversational Insights. After completing this challenge, you will be ready to deploy Conversation Insights to improve customer service performance, and create better customer experiences. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!

Learn more

In this course you will learn how to leverage Conversational Insights to uncover hidden information from your contact center data to increase operational efficiency and drive data-driven business decisions. Please note Contact Center AI Insights were recently renamed to Conversational Insights, and this course is in the process of being updated to reflect the new product name for Contact Center AI Insights.

Learn more

Complete the Improve customer and agent satisfaction with Agent Assist skill badge to demonstrate your proficiency in configuring basic conversational agents that can escalate actions to human agents, and configuring Agent Assist to help human agents with customer queries. You prove your knowledge in configuring Generators for summarization, classification and recommendation of tickets as well leverage tools such as Generative Knowledge Assist, to provide further context to human agents. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!

Learn more

In this course you will learn how Agent Assist can enhance the productivity of human agents while interacting with customers through the chat channel.

Learn more

In this course you will learn how Conversational AI Agent Assist can help distill complex customer interactions into concise and clear summaries. Please note Dialogflow CX was recently renamed to Conversational Agents, Virtual agent renamed to Conversational agent, and CCAI Insights were renamed to Conversational Insights, and this course is in the process of being updated to reflect the new product names for Dialogflow CX, and Virtual Agent, CCAI Insights.

Learn more

In this course you will learn how Agent Assist can enhance the productivity of human agents while interacting with customers through the voice channel, as well as the options available for integration with other platforms in the Conversational AI ecosystem.

Learn more

Learn about building conversational AI voice and chat integrations, including how telephony systems can connect with Google to enable phone-based interactions within the Conversational AI ecosystem. Explore key topics such as the differences between chat and voice conversations, the writing process for creating conversation scripts, and the beginning of the interrogative series and closing sequence.

Learn more

Connect Conversational Agents to external systems and APIs to expand what agents can do, designing an end-to-end system that is resilient, fault-tolerant and secure.

Learn more

Complete the Build basic Conversational Agents with Playbooks and Flows skill badge to demonstrate your proficiency in building virtual agents using traditional NLU and generative-based features. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!

Learn more

In this course, you'll learn to develop generative agents that answer questions using websites, documents, or structured data. You will explore Vertex AI Applications and understand the advantages of data store agents, including their scalability and security. You'll learn about different data store types and also discover how to connect data stores to agents and add personalization for enhanced responses. Finally, you'll gain insights into common search configurations and troubleshooting techniques.

Learn more

Explore the Generative AI features for Conversational Agents and how to incorporate them into stateful Flows. Discover the possibilities with Generators, Generative Fallback, and Data Stores, as well as best practices and security settings for using these features.

Learn more

Discover flows in Conversational Agents and learn how to build deterministic chat and voice experiences with language models. Explore key concepts like drivers, intents, and entities, and how to use them to create conversational agents.

Learn more

Explore Playbooks and their implementation of the ReAct pattern for building Conversational Agents. You will learn how to construct a Playbook, set up goals and instructions to build a chatbot in natural language, and learn to test and deploy your solution.

Learn more

This course explores the different products and capabilities of Customer Engagement Suite (CES) and Conversational agents. Additionally, it covers the foundational principles of conversation design to craft engaging and effective experiences that emulate human-like experiences specific to the Chat channel.

Learn more

Gen AI: Beyond the Chatbot is the first course of the Gen AI Leader learning path and has no prerequisites. This course aims to move beyond the basic understanding of chatbots to explore the true potential of generative AI for your organization. You explore concepts like foundation models and prompt engineering, which are crucial for leveraging the power of gen AI. The course also guides you through important considerations you should make when developing a successful gen AI strategy for your organization.

Learn more

This course helps learners create a study plan for the PMLE (Professional Machine Learning Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

Learn more

Complete the intermediate Engineer Data for Predictive Modeling with BigQuery ML skill badge to demonstrate skills in the following: building data transformation pipelines to BigQuery using Dataprep by Trifacta; using Cloud Storage, Dataflow, and BigQuery to build extract, transform, and load (ETL) workflows; and building machine learning models using BigQuery ML. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge course, and final assessment challenge lab, to receive a digital badge that you can share with your network.

Learn more

Complete the intermediate Create ML Models with BigQuery ML skill badge to demonstrate skills in creating and evaluating machine learning models with BigQuery ML to make data predictions.

Learn more

Complete the introductory Prepare Data for ML APIs on Google Cloud skill badge to demonstrate skills in the following: cleaning data with Dataprep by Trifacta, running data pipelines in Dataflow, creating clusters and running Apache Spark jobs in Dataproc, and calling ML APIs including the Cloud Natural Language API, Google Cloud Speech-to-Text API, and Video Intelligence API. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge course, and the final assessment challenge lab, to receive a skill badge that you can share with your network.

Learn more

Earn the intermediate skill badge by completing the Build and Deploy Machine Learning Solutions on Vertex AI course, where you will learn how to use Google Cloud's Vertex AI platform, AutoML, and custom training services to train, evaluate, tune, explain, and deploy machine learning models. This skill badge course is for professional Data Scientists and Machine Learning Engineers. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this Skill Badge, and the final assessment challenge lab, to receive a digital badge that you can share with your network.

Learn more

This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.

Learn more

This course introduces important topics of AI privacy and safety. It explores practical methods and tools to implement AI privacy and safety recommended practices through the use of Google Cloud products and open-source tools.

Learn more

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

Learn more

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners will get hands-on practice using Vertex AI Feature Store's streaming ingestion at the SDK layer.

Learn more

This course is an introduction to Vertex AI Notebooks, which are Jupyter notebook-based environments that provide a unified platform for the entire machine learning workflow, from data preparation to model deployment and monitoring. The course covers the following topics: (1) The different types of Vertex AI Notebooks and their features and (2) How to create and manage Vertex AI Notebooks.

Learn more

This course introduces concepts of responsible AI and AI principles. It covers techniques to practically identify fairness and bias and mitigate bias in AI/ML practices. It explores practical methods and tools to implement Responsible AI best practices using Google Cloud products and open source tools.

Learn more

This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.

Learn more

This course introduces concepts of AI interpretability and transparency. It discusses the importance of AI transparency for developers and engineers. It explores practical methods and tools to help achieve interpretability and transparency in both data and AI models.

Learn more

Generative AI applications can create new user experiences that were nearly impossible before the invention of large language models (LLMs). As an application developer, how can you use generative AI to build engaging, powerful apps on Google Cloud? In this course, you'll learn about generative AI applications and how you can use prompt design and retrieval augmented generation (RAG) to build powerful applications using LLMs. You'll learn about a production-ready architecture that can be used for generative AI applications and you'll build an LLM and RAG-based chat application.

Learn more

This is an introductory level micro-learning course that explores what large language models (LLM) are, the use cases where they can be utilized, and how you can use prompt tuning to enhance LLM performance. It also covers Google tools to help you develop your own Gen AI apps.

Learn more

This course equips machine learning practitioners with the essential tools, techniques, and best practices for evaluating both generative and predictive AI models. Model evaluation is a critical discipline for ensuring that ML systems deliver reliable, accurate, and high-performing results in production. Participants will gain a deep understanding of various evaluation metrics, methodologies, and their appropriate application across different model types and tasks. The course will emphasize the unique challenges posed by generative AI models and provide strategies for tackling them effectively. By leveraging Google Cloud's Vertex AI platform, participants will learn how to implement robust evaluation processes for model selection, optimization, and continuous monitoring.

Learn more

This is an introductory level microlearning course aimed at explaining what Generative AI is, how it is used, and how it differs from traditional machine learning methods. It also covers Google Tools to help you develop your own Gen AI apps.

Learn more

This course is dedicated to equipping you with the knowledge and tools needed to uncover the unique challenges faced by MLOps teams when deploying and managing Generative AI models, and exploring how Vertex AI empowers AI teams to streamline MLOps processes and achieve success in Generative AI projects.

Learn more

This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.

Learn more

This course introduces the AI and machine learning (ML) offerings on Google Cloud that build both predictive and generative AI projects. It explores the technologies, products, and tools available throughout the data-to-AI life cycle, encompassing AI foundations, development, and solutions. It aims to help data scientists, AI developers, and ML engineers enhance their skills and knowledge through engaging learning experiences and practical hands-on exercises.

Learn more