Vinay Sai Devarapu
Member since 2022
Bronze League
16275 points
Member since 2022
In this course, you learn about data engineering on Google Cloud, the roles and responsibilities of data engineers, and how those map to offerings provided by Google Cloud. You also learn about ways to address data engineering challenges.
In this course, application developers learn how to design and develop cloud-native applications that seamlessly integrate components from the Google Cloud ecosystem. Through a combination of presentations, demos, and hands-on labs, participants learn how to create repeatable deployments by treating infrastructure as code, choose the appropriate application execution environment for an application, and monitor application performance. Completing one version of each lab is required. Each lab is available in Node.js. In most cases, the same labs are also provided in Python or Java. You may complete each lab in whichever language you prefer.
Bu kursta yapay zeka destekli arama teknolojileri, araçları ve uygulamalarını keşfedeceksiniz. Vektör yerleştirmelerinin kullanıldığı semantik aramayı, semantik ve anahtar kelime yaklaşımlarının birleştirildiği karma aramayı ve yapay zeka temsilcisini temellendirerek yapay zeka halüsinasyonlarının en aza indirildiği veriyle artırılmış üretimi (RAG) öğrenin. Akıllı arama motorunuzu oluşturmak için Vertex AI Vector Search'ü uygulamalı olarak deneyin.
(This course was previously named Multimodal Prompt Engineering with Gemini and PaLM) This course teaches how to use Vertex AI Studio, a Google Cloud console tool for rapidly prototyping and testing generative AI models. You learn to test sample prompts, design your own prompts, and customize foundation models to handle tasks that meet your application's needs. Whether you are looking for text, chat, code, image or speech generative experiences Vertex AI Studio offers you an interface to work with and APIs to integrate your production application.
Earn a skill badge by completing the Set Up a Google Cloud Network skill badge course, where you will learn how to perform basic networking tasks on Google Cloud Platform - create a custom network, add subnets firewall rules, then create VMs and test the latency when they communicate with each other.
In many IT organizations, incentives are not aligned between developers, who strive for agility, and operators, who focus on stability. Site reliability engineering, or SRE, is how Google aligns incentives between development and operations and does mission-critical production support. Adoption of SRE cultural and technical practices can help improve collaboration between the business and IT. This course introduces key practices of Google SRE and the important role IT and business leaders play in the success of SRE organizational adoption.
Bu kursta Vertex AI Studio tanıtılmaktadır. Bu araç, üretken yapay zeka modelleriyle etkileşime geçmek, kurumsal fikirlerin prototipini oluşturmak ve bunları gerçek hayatta uygulamak için kullanılır. Gerçek hayattan kullanım alanları, etkileşimli dersler ve uygulamalı laboratuvarlar aracılığıyla, ilk istemden son ürüne uzanan yaşam döngüsünü keşfedecek ve çoklu format destekli Gemini uygulamaları, istem tasarımı, istem mühendisliği ve model ayarlama konularında Vertex AI Studio'dan nasıl yararlanabileceğinizi öğreneceksiniz. Bu kursun amacı, Vertex AI Studio'yu kullanarak projelerinizde üretken yapay zekadan yararlanabilmenizi sağlamaktır.
Vertex AI'da istem mühendisliği, görüntü analizi ve çok modlu üretken teknikler gibi becerileri göstermek için Vertex AI'da İstem Tasarımı beceri rozetini tamamlayın. Etkili istemlerin nasıl oluşturulacağını, üretken yapay zeka çıktılarına nasıl rehberlik edileceğini ve Gemini modellerinin gerçek dünyadaki pazarlama senaryolarına nasıl uygulanacağını keşfedin. Ein Beceri rozeti, Google Cloud ürün ve hizmetlerine ilişkin uzmanlığınızın tanınması amacıyla Google Cloud tarafından verilen özel bir dijital rozettir ve bilginizi etkileşimli, uygulamalı bir ortamda uygulama yeteneğinizi test eder. Ağınızla paylaşabileceğiniz bir beceri rozeti almak için bu beceri rozeti kursunu ve son değerlendirme yarışması laboratuvarını tamamlayın. Bu aktiviteyi tamamlayın ve bir rozet kazanın! Geliştirdiğiniz becerileri herkese göstererek bulut üstüne kariyerinizi geliştirin.
Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.
Bu kurs, dönüştürücü mimarisini ve dönüştürücülerden çift yönlü kodlayıcı temsilleri (BERT - Encoder Representations from Transformers) modelini tanıtmaktadır. Kursta, öz dikkat mekanizması gibi dönüştürücü mimarisinin ana bileşenlerini ve BERT modelini oluşturmak için dönüştürücünün nasıl kullanıldığını öğreneceksiniz. Ayrıca sınıflandırma, soru yanıtlama ve doğal dil çıkarımı gibi BERT'in kullanılabileceği çeşitli görevler hakkında da bilgi sahibi olacaksınız. Kursun tahmini süresi 45 dakikadır.
Bu kursta, kodlayıcı-kod çözücü mimarisi özet olarak anlatılmaktadır. Bu mimari; makine çevirisi, metin özetleme ve soru yanıtlama gibi "sıradan sıraya" görevlerde yaygın olarak kullanılan, güçlü bir makine öğrenimi mimarisidir. Kursta, kodlayıcı-kod çözücü mimarisinin ana bileşenlerini ve bu modellerin nasıl eğitilip sunulacağını öğreneceksiniz. Laboratuvarın adım adım açıklamalı kılavuz bölümünde ise sıfırdan şiir üretmek için TensorFlow'da kodlayıcı-kod çözücü mimarisinin basit bir uygulamasını yazacaksınız.
Bu kursta nöral ağların, giriş sırasının belirli bölümlerine odaklanmasına olanak tanıyan güçlü bir teknik olan dikkat mekanizması tanıtılmaktadır. Kursta, dikkat mekanizmasının çalışma şeklini ve makine öğrenimi, metin özetleme ve soru yanıtlama gibi çeşitli makine öğrenimi görevlerinin performansını artırmak için nasıl kullanılabileceğini öğreneceksiniz.
Bu kursta, görüntü üretme alanında gelecek vadeden bir makine öğrenimi modelleri ailesi olan "difüzyon modelleri" tanıtılmaktadır. Difüzyon modelleri fizikten, özellikle de termodinamikten ilham alır. Geçtiğimiz birkaç yıl içinde, gerek araştırma gerekse endüstri alanında difüzyon modelleri popülerlik kazandı. Google Cloud'daki son teknoloji görüntü üretme model ve araçlarının çoğu, difüzyon modelleri ile desteklenmektedir. Bu kursta, difüzyon modellerinin ardındaki teori tanıtılmakta ve bu modellerin Vertex AI'da nasıl eğitilip dağıtılacağı açıklanmaktadır.
Bu kurs, sorumlu yapay zekanın ne olduğunu, neden önemli olduğunu ve Google'ın sorumlu yapay zekayı ürünlerinde nasıl uyguladığını açıklamayı amaçlayan giriş seviyesinde bir mikro öğrenme kursudur. Ayrıca Google'ın 7 yapay zeka ilkesini de tanıtır.
Bu giriş seviyesi mikro öğrenme kursunda büyük dil modelleri (BDM) nedir, hangi kullanım durumlarında kullanılabileceği ve büyük dil modelleri performansını artırmak için nasıl istem ayarlaması yapabileceğiniz keşfedilecektir. Ayrıca kendi üretken yapay zeka uygulamalarınızı geliştirmenize yardımcı olacak Google araçları hakkında bilgi verilecektir.
Bu, üretken yapay zekanın ne olduğunu, nasıl kullanıldığını ve geleneksel makine öğrenme yöntemlerinden nasıl farklı olduğunu açıklamayı amaçlayan giriş seviyesi bir mikro öğrenme kursudur. Ayrıca kendi üretken yapay zeka uygulamalarınızı geliştirmenize yardımcı olacak Google Araçlarını da kapsar.
This course helps you structure your preparation for the Associate Cloud Engineer exam. You will learn about the Google Cloud domains covered by the exam and how to create a study plan to improve your domain knowledge.
This course provides an introduction to using Terraform for Google Cloud. It enables learners to describe how Terraform can be used to implement infrastructure as code and to apply some of its key features and functionalities to create and manage Google Cloud infrastructure. Learners will get hands-on practice building and managing Google Cloud resources using Terraform.
This course teaches participants techniques for monitoring and improving infrastructure and application performance in Google Cloud. Using a combination of presentations, demos, hands-on labs, and real-world case studies, attendees gain experience with full-stack monitoring, real-time log management and analysis, debugging code in production, tracing application performance bottlenecks, and profiling CPU and memory usage.
In this course, "Architecting with Google Kubernetes Engine: Foundations," you get a review of the layout and principles of Google Cloud, followed by an introduction to creating and managing software containers and an introduction to the architecture of Kubernetes. This is the first course of the Architecting with Google Kubernetes Engine series. After completing this course, enroll in the Architecting with Google Kubernetes Engine: Workloads course.
Welcome to the Getting Started with Google Kubernetes Engine course. If you're interested in Kubernetes, a software layer that sits between your applications and your hardware infrastructure, then you’re in the right place! Google Kubernetes Engine brings you Kubernetes as a managed service on Google Cloud. The goal of this course is to introduce the basics of Google Kubernetes Engine, or GKE, as it’s commonly referred to, and how to get applications containerized and running in Google Cloud. The course starts with a basic introduction to Google Cloud, and is then followed by an overview of containers and Kubernetes, Kubernetes architecture, and Kubernetes operations.
This accelerated on-demand course introduces participants to the comprehensive and flexible infrastructure and platform services provided by Google Cloud. Through a combination of video lectures, demos, and hands-on labs, participants explore and deploy solution elements, including securely interconnecting networks, load balancing, autoscaling, infrastructure automation and managed services.
This accelerated on-demand course introduces participants to the comprehensive and flexible infrastructure and platform services provided by Google Cloud with a focus on Compute Engine. Through a combination of video lectures, demos, and hands-on labs, participants explore and deploy solution elements, including infrastructure components such as networks, systems and applications services. This course also covers deploying practical solutions including customer-supplied encryption keys, security and access management, quotas and billing, and resource monitoring.
This accelerated on-demand course introduces participants to the comprehensive and flexible infrastructure and platform services provided by Google Cloud with a focus on Compute Engine. Through a combination of video lectures, demos, and hands-on labs, participants explore and deploy solution elements, including infrastructure components such as networks, virtual machines and applications services. You will learn how to use the Google Cloud through the console and Cloud Shell. You'll also learn about the role of a cloud architect, approaches to infrastructure design, and virtual networking configuration with Virtual Private Cloud (VPC), Projects, Networks, Subnetworks, IP addresses, Routes, and Firewall rules.
Google Cloud Fundamentals: Core Infrastructure introduces important concepts and terminology for working with Google Cloud. Through videos and hands-on labs, this course presents and compares many of Google Cloud's computing and storage services, along with important resource and policy management tools.