Rejoindre Se connecter

Donn Aiken

Date d'abonnement : 2022

Ligue de bronze

440 points
Introduction à Vertex AI Studio Earned juin 30, 2023 EDT
Generative AI Fundamentals - Français Earned juin 30, 2023 EDT
Introduction à l'IA responsable Earned juin 30, 2023 EDT
Architecture encodeur/décodeur Earned mai 22, 2023 EDT
Créer des modèles de création de légendes pour les images Earned mai 22, 2023 EDT
Introduction à la génération d'images Earned mai 22, 2023 EDT
Explorateur de l'IA générative – Vertex AI Earned mai 21, 2023 EDT
Infrastructure fondamentale Google Cloud : services principaux Earned mai 14, 2023 EDT
Modèles Transformer et modèle BERT Earned mai 13, 2023 EDT
Mécanisme d'attention Earned mai 13, 2023 EDT
Présentation des grands modèles de langage Earned mai 13, 2023 EDT
Présentation de l'IA générative Earned mai 13, 2023 EDT
Premiers pas avec Google Kubernetes Engine Earned jan. 15, 2023 EST
Infrastructure Google Cloud flexible : scaling et automatisation Earned déc. 26, 2022 EST
Preparing for your Professional Cloud Architect Journey Earned déc. 26, 2022 EST
Infrastructure fondamentale Google Cloud : principes de base Earned déc. 21, 2022 EST
Concepts fondamentaux de Google Cloud : infrastructure de base Earned déc. 9, 2022 EST

Ce cours présente Vertex AI Studio, un outil permettant d'interagir avec des modèles d'IA générative, de prototyper des idées commerciales et de les envoyer en production. Au moyen d'un cas d'utilisation immersif, de leçons captivantes et d'un atelier pratique, vous allez découvrir le cycle de vie de la requête au produit. Vous apprendrez également à utiliser Vertex AI Studio pour les applications multimodales Gemini, la conception de requêtes, le prompt engineering (ingénierie des requêtes) et le réglage de modèles. L'objectif est de vous permettre d'exploiter tout le potentiel de l'IA générative dans vos projets avec Vertex AI Studio.

En savoir plus

Suivez les cours Introduction to Generative AI, Introduction to Large Language Models et Introduction to Responsible AI, et obtenez un badge de compétence. Votre réussite au quiz final démontrera que vous comprenez les concepts de base relatifs à l'IA générative. Un badge de compétence est un badge numérique délivré par Google Cloud. Il atteste de votre expertise sur les produits et services Google Cloud. Partagez votre badge de compétence en rendant votre profil public et en l'ajoutant à votre profil sur les réseaux sociaux.

En savoir plus

Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA responsable, souligne son importance et décrit comment Google l'implémente dans ses produits. Il présente également les sept principes de l'IA de Google.

En savoir plus

Ce cours offre un aperçu de l'architecture encodeur/décodeur, une architecture de machine learning performante souvent utilisée pour les tâches "seq2seq", telles que la traduction automatique, la synthèse de texte et les questions-réponses. Vous découvrirez quels sont les principaux composants de l'architecture encodeur/décodeur, et comment entraîner et exécuter ces modèles. Dans le tutoriel d'atelier correspondant, vous utiliserez TensorFlow pour coder une implémentation simple de cette architecture afin de générer un poème en partant de zéro.

En savoir plus

Dans ce cours, vous allez apprendre à créer un modèle de sous-titrage d'images à l'aide du deep learning. Vous découvrirez les différents composants de ce type de modèle, comme l'encodeur et le décodeur, et comment l'entraîner et l'évaluer. À la fin du cours, vous serez en mesure de créer vos propres modèles de sous-titrage d'images et de les utiliser pour générer des sous-titres pour des images.

En savoir plus

Ce cours présente les modèles de diffusion, une famille de modèles de machine learning qui s'est récemment révélée prometteuse dans le domaine de la génération d'images. Les modèles de diffusion trouvent leur origine dans la physique, et plus précisément dans la thermodynamique. Au cours des dernières années, ils ont gagné en popularité dans la recherche et l'industrie. Ils sont à la base de nombreux modèles et outils Google Cloud avancés de génération d'images. Ce cours vous présente les bases théoriques des modèles de diffusion, et vous explique comment les entraîner et les déployer sur Vertex AI.

En savoir plus

Le cours "Explorateur de l'IA générative – Vertex AI" est un ensemble d'ateliers consacrés à l'utilisation de l'IA générative sur Google Cloud. Vous apprendrez à utiliser les modèles de la famille d'API PaLM Vertex AI comme text-bison, chat-bison, et textembedding-gecko. Vous découvrirez également comment rédiger des prompts, quelles bonnes pratiques appliquer, et comment utiliser l'IA générative pour l'idéation, la classification et l'extraction de texte, la création de synthèses, et plus encore. Enfin, vous apprendrez à régler un modèle de fondation à l'aide de l'entraînement personnalisé Vertex AI et à le déployer sur un point de terminaison Vertex AI.

En savoir plus

Ce cours accéléré à la demande présente aux participants l'infrastructure complète et flexible de Google Cloud Platform ainsi que les services de plate-forme fournis, en s'intéressant plus particulièrement à Compute Engine. À travers un ensemble de vidéos de présentation, de démonstrations et d'ateliers pratiques, les participants découvrent et déploient des éléments de solution, y compris des composants d'infrastructure tels que les réseaux, les systèmes et les services applicatifs. Ce cours aborde également le déploiement de solutions pratiques, telles que les clés de chiffrement fournies par le client, la gestion de la sécurité et des accès, les quotas et la facturation, ainsi que la surveillance des ressources.

En savoir plus

Ce cours présente l'architecture Transformer et le modèle BERT (Bidirectional Encoder Representations from Transformers). Vous découvrirez quels sont les principaux composants de l'architecture Transformer, tels que le mécanisme d'auto-attention, et comment ils sont utilisés pour créer un modèle BERT. Vous verrez également les différentes tâches pour lesquelles le modèle BERT peut être utilisé, comme la classification de texte, les questions-réponses et l'inférence en langage naturel. Ce cours dure environ 45 minutes.

En savoir plus

Ce cours présente le mécanisme d'attention, une technique efficace permettant aux réseaux de neurones de se concentrer sur des parties spécifiques d'une séquence d'entrée. Vous découvrirez comment fonctionne l'attention et comment l'utiliser pour améliorer les performances de diverses tâches de machine learning, dont la traduction automatique, la synthèse de texte et les réponses aux questions.

En savoir plus

Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce que sont les grands modèles de langage (LLM). Il inclut des cas d'utilisation et décrit comment améliorer les performances des LLM grâce au réglage des requêtes. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.

En savoir plus

Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA générative, décrit à quoi elle sert et souligne ce qui la distingue des méthodes de machine learning traditionnel. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.

En savoir plus

Bienvenue dans le cours "Premiers pas avec Google Kubernetes Engine". Si vous vous intéressez à Kubernetes, une couche logicielle située entre vos applications et votre infrastructure matérielle, vous êtes au bon endroit. Google Kubernetes Engine vous permet d'accéder à Kubernetes en tant que service géré sur Google Cloud. L'objectif de ce cours est de vous présenter les principes de base de Google Kubernetes Engine (GKE), et de vous apprendre à conteneuriser et exécuter des applications dans Google Cloud. Le cours commence par une introduction aux principes de base de Google Cloud, puis se poursuit par une présentation des conteneurs et de Kubernetes, de l'architecture de Kubernetes et des opérations Kubernetes.

En savoir plus

Ce cours à la demande accéléré présente aux participants les services complets et flexibles d'infrastructure et de plate-forme offerts par Google Cloud. À travers un ensemble de cours vidéo, de démonstrations et d'ateliers pratiques, les participants explorent et déploient des éléments de solution, y compris l'interconnexion sécurisée de réseaux, l'équilibrage de charge, l'autoscaling, l'automatisation de l'infrastructure et les services gérés.

En savoir plus

This course helps learners create a study plan for the PCA (Professional Cloud Architect) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

En savoir plus

Ce cours accéléré à la demande présente aux participants les services complets et flexibles d'infrastructure et de plate-forme offerts par Google Cloud, en s'intéressant plus particulièrement à Compute Engine. À travers un ensemble de cours vidéo, de démonstrations et d'ateliers pratiques, les participants découvrent et déploient des éléments de solution, y compris des composants d'infrastructure tels que des réseaux, des machines virtuelles et des services d'applications. Vous découvrirez comment utiliser Google Cloud via la console et Cloud Shell. Vous en apprendrez également plus sur le rôle d'un architecte cloud, sur les approches de la conception d'infrastructure et sur la configuration de réseaux virtuels avec Virtual Private Cloud (VPC), les projets, les réseaux, les sous-réseaux, les adresses IP, les routes et les règles de pare-feu.

En savoir plus

"Concepts fondamentaux de Google Cloud : infrastructure de base" présente les concepts et les termes à connaître pour utiliser Google Cloud. À travers des vidéos et des ateliers pratiques, il décrit et compare la plupart des services Google Cloud de calcul et de stockage, ainsi que des outils importants de gestion des ressources et des règles.

En savoir plus