가입 로그인

Armel Ayimdji Tekemetieu

회원 가입일: 2023

골드 리그

67463포인트
Evaluate Gen AI model and agent performance Earned 8월 27, 2025 EDT
Model evaluation on Vertex AI Earned 8월 26, 2025 EDT
Evaluate ADK Agents with Vertex AI Gen AI Evaluation Service Earned 8월 21, 2025 EDT
Deploy a RAG application with vector search in Firestore Earned 8월 19, 2025 EDT
Implement RAG with Vertex AI Earned 8월 17, 2025 EDT
Find, Explore and Deploy Model Garden Models Earned 8월 17, 2025 EDT
Improve Performance by Fine-Tuning Foundation Models Earned 8월 16, 2025 EDT
Build Gen AI solutions using Model Garden models and APIs Earned 8월 15, 2025 EDT
Edit images with Imagen Earned 8월 13, 2025 EDT
Generate and Edit Media with Imagen, Gemini, and Veo Earned 8월 12, 2025 EDT
Implement Hybrid Search Earned 8월 12, 2025 EDT
BigQuery로 임베딩, 벡터 검색, RAG 만들기 Earned 8월 12, 2025 EDT
Explore Google's Gen AI Models Earned 8월 12, 2025 EDT
Engineer Effective Prompts for Generative Models Earned 8월 6, 2025 EDT
Empower Gen AI apps with tool use Earned 8월 6, 2025 EDT
Extend Gemini with controlled generation and Tool use Earned 7월 25, 2025 EDT
Virtual FAQ with data store agents Earned 6월 17, 2025 EDT
Build basic Conversational Agents with Playbooks and Flows Earned 6월 16, 2025 EDT
Generative Playbooks Earned 6월 16, 2025 EDT
Build deterministic Virtual Agent enhanced with data stores Earned 1월 17, 2025 EST
Build generative virtual agents with API integrations Earned 1월 17, 2025 EST
Customer Engagement Suite with Google AI Architecture Earned 10월 21, 2024 EDT
Intro to Conversational AI and Conversational AI Engagement Framework Earned 10월 21, 2024 EDT
Build and Deploy a Generative AI solution using a RAG framework Earned 8월 3, 2024 EDT
Vertex AI로 머신러닝 작업(MLOps) 기능 관리 Earned 6월 7, 2024 EDT
머신러닝 작업(MLOps): 시작하기 Earned 6월 6, 2024 EDT
Introduction to CES and Conversational Agents Earned 6월 6, 2024 EDT
특성 추출 Earned 6월 3, 2024 EDT
Google Cloud에서 Keras를 사용해 ML 모델을 빌드, 학습, 배포하기 Earned 5월 29, 2024 EDT
Launching into Machine Learning - 한국어 Earned 5월 28, 2024 EDT
Vertex AI Studio 소개 Earned 5월 24, 2024 EDT
Generative AI for Business Leaders Earned 5월 24, 2024 EDT
Google Cloud의 AI 및 머신러닝 소개 Earned 5월 24, 2024 EDT
Develop Advanced Enterprise Search and Conversation Applications Earned 5월 8, 2024 EDT
Custom Search with Embeddings in Vertex AI Earned 5월 8, 2024 EDT
벡터 검색 및 임베딩 Earned 5월 7, 2024 EDT
Develop Advanced Enterprise Search and Conversation Applications Earned 2월 1, 2024 EST
Customer Experiences with Contact Center AI Earned 1월 30, 2024 EST
Text Prompt Engineering Techniques Earned 1월 25, 2024 EST
Generative AI Explorer : Vertex AI Earned 1월 24, 2024 EST
Vertex AI Studio 소개 Earned 1월 19, 2024 EST
이미지 생성 소개 Earned 1월 19, 2024 EST
이미지 캡셔닝 모델 만들기 Earned 1월 18, 2024 EST
인코더-디코더 아키텍처 Earned 1월 18, 2024 EST
Transformer 모델 및 BERT 모델 Earned 1월 18, 2024 EST
어텐션 메커니즘 Earned 1월 18, 2024 EST
Integrate Vertex AI Search and Conversation into Voice and Chat Apps Earned 1월 11, 2024 EST
Conversational AI on Vertex AI and Dialogflow CX Earned 1월 9, 2024 EST
Building Gen AI Apps with Vertex AI: Prompting and Tuning Earned 1월 1, 2024 EST
Implementing Generative AI with Vertex AI Earned 12월 9, 2023 EST
책임감 있는 AI: Google Cloud를 통한 AI 원칙 적용하기 Earned 12월 4, 2023 EST
Generative AI Fundamentals - 한국어 Earned 12월 3, 2023 EST
책임감 있는 AI 소개 Earned 12월 3, 2023 EST
대규모 언어 모델 소개 Earned 12월 3, 2023 EST
CCAI Operations and Implementation Earned 6월 16, 2023 EDT
Virtual Agent Development in Dialogflow CX for Software Devs Earned 6월 15, 2023 EDT
Virtual Agent Development in Dialogflow CX for Citizen Devs Earned 6월 14, 2023 EDT
생성형 AI 소개 Earned 6월 12, 2023 EDT
Contact Center AI: Conversational Design Fundamentals Earned 6월 12, 2023 EDT
DEPRECATED Create Conversational AI Agents with Dialogflow CX Earned 6월 7, 2023 EDT

Complete the Evaluate Gen AI model and agent performance skill badge to demonstrate your ability to use the Gen AI evaluation service. You will evaluate models to select the best model for a given task, compare models against each other and evaluate the performance of agents. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!

자세히 알아보기

This course delves into the complexities of assessing the quality of large language model outputs. It examines the challenges enterprises face due to the subjective and sometimes incorrect nature of LLM responses, including hallucinations and inconsistent results. The course introduces various evaluation metrics for different tasks like classification, text generation, and question answering, such as Accuracy, Precision, Recall, F1 score, ROUGE, BLEU, and Exact Match. It also explores evaluation methods offered by Vertex AI LLM Evaluation Services, including computation-based, autorater, and human evaluation, providing insights into their application and benefits. Finally, the module covers how to unit test LLM applications within Vertex AI.

자세히 알아보기

Evaluation is important at every step of your Gen AI development process. In this course you will learn how to evaluate gen AI agents built using agent frameworks.

자세히 알아보기

This lab tests your ability to develop a real-world Generative AI Q&A solution using a RAG framework. You will use Firestore as a vector database and deploy a Flask app as a user interface to query a food safety knowledge base.

자세히 알아보기

Learn how to build your own Retrieval-Augmented Generation (RAG) solutions for greater control and flexibility than out-of-the-box implementations. Create a custom RAG solution using Vertex AI APIs, vector stores, and the LangChain framework.

자세히 알아보기

Model Garden is a model library that helps you discover, test, and deploy models from Google and Google partners. Learn how to explore the available models and select the right ones for your use case. And how to deploy and interact with Model Garden models through the Google Cloud console and APIs.

자세히 알아보기

Model tuning is an effective way to customize large models to your tasks. It's a key step to improve the model's quality and efficiency. Model tuning provides benefits such as higher quality results for your specific tasks and increased model robustness. You learn some of the tuning options available in Vertex AI and when to use them.

자세히 알아보기

Complete the Develop solutions using Model Garden APIs skill badge to demonstrate your ability to use Vertex AI Model Garden features when building gen AI solutions. You will use partner APIs such as Anthropic Claude ands Meta Llama, deploy and programatically access foundation models like Gemma and Stable Diffusion XL and access Vertex AI Endpoints. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!

자세히 알아보기

Complete the Edit images with Imagen skill badge to demonstrate your skills with Imagen's mask modes and editing modes to edit images according to certain prompts. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!

자세히 알아보기

Generate engaging media with Google's foundation models for media. Create new images with Imagen, or edit your existing photos by adding details or outpainting to create a wider view. Replace backgrounds to put your products in new scenes. And learn the basics of generating videos with Veo!

자세히 알아보기

Learn how to create Hybrid Search applications using Vertex AI Vertex Search to combine semantic searching with keyword search to return results based on both semantic meaning and keyword matching.

자세히 알아보기

이 과정에서는 AI 할루시네이션을 완화하는 BigQuery의 검색 증강 생성(RAG) 솔루션을 살펴봅니다. 임베딩 만들기, 벡터 공간 검색, 개선된 응답 생성을 포함한 RAG 워크플로를 소개합니다. 또한 이 과정은 이러한 단계의 배경이 되는 개념을 설명하고 BigQuery를 통한 실질적인 구현 과정을 살펴봅니다. 이 과정을 마친 학습자는 BigQuery와 Gemini 및 임베딩 모델 같은 생성형 AI 모델을 사용하여 자신의 AI 할루시네이션 사용 사례를 해결하는 RAG 파이프라인을 빌드할 수 있게 됩니다.

자세히 알아보기

Learn how to leverage Gemini multimodal capabilities to process and generate text, images, and audio and to integrate Gemini through APIs to perform tasks such as content creation and summarization.

자세히 알아보기

Learn a variety of strategies and techniques to engineer effective prompts for generative models

자세히 알아보기

An LLM-based application can process language in a way that resembles thought. But if you want to extend its capabilities to take actions by running other functions you have coded, you will need to use function calling. This can also be referred to as tool use. Additionally, you can give a model the ability to search Google or search a data store of documents to ground its responses. In other words, to base its answers on that information. In this course, you’ll explore these concepts.

자세히 알아보기

Complete the Extend Gemini with controlled generation and Tool use skill badge to demonstrate your proficiency in connecting models to external tools and APIs. This allows models to augment their knowledge, extend their capabilities and interact with external systems to take actions such as sending an email. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!"

자세히 알아보기

In this course, you'll learn to develop generative agents that answer questions using websites, documents, or structured data. You will explore Vertex AI Applications and understand the advantages of data store agents, including their scalability and security. You'll learn about different data store types and also discover how to connect data stores to agents and add personalization for enhanced responses. Finally, you'll gain insights into common search configurations and troubleshooting techniques.

자세히 알아보기

Complete the Build basic Conversational Agents with Playbooks and Flows skill badge to demonstrate your proficiency in building virtual agents using traditional NLU and generative-based features. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!

자세히 알아보기

Explore Playbooks and their implementation of the ReAct pattern for building Conversational Agents. You will learn how to construct a Playbook, set up goals and instructions to build a chatbot in natural language, and learn to test and deploy your solution.

자세히 알아보기

Demonstrate the ability to create and deploy deterministic virtual agents using Dialgflow CX and augment responses by grounding results on your own data integrating with Vertex AI Agent Builder data stores and leveraging Gemini for summarizations. You will use the following technologies and Google Cloud services: Vertex AI Agent Builder Dialogflow CX Gemini

자세히 알아보기

Demonstrate the ability to create and deploy generative virtual agents with natural language using Vertex AI Agent Builder and augment responses by integrating Gemini responses with third party APIs and your own data stores You will use the following technologies and Google Cloud services: Vertex AI Agent Builder Gemini Cloud Functions

자세히 알아보기

In this course you will learn the key architectural considerations that need to be taken into account when designing for the implementation of Conversational AI solutions. Please note Dialogflow CX was recently renamed to Conversational Agents and CCAI Insights was renamed to Conversational Insights.

자세히 알아보기

This is an introductory course to all solutions in the Conversational AI portfolio and the Gen AI features that are available to transform them. The course also explores the business case around Conversational AI, and the use cases and user personas addressed by the solution. Please note Dialogflow CX was recently renamed to Conversational Agents and this course is in the process of being updated to reflect the new product name for Dialogflow CX.

자세히 알아보기

Demonstrate your ability to implement updated prompt engineering techniques and utilize several of Gemini's key capacilities including multimodal understanding and function calling. Then integrate generative AI into a RAG application deployed to Cloud Run. This course contains labs that are to be used as a test environment. They are deployed to test your understanding as a learner with a limited scope. These technologies can be used with fewer limitations in a real world environment.

자세히 알아보기

이 과정에서는 Google Cloud에서 프로덕션 ML 시스템을 배포, 평가, 모니터링, 운영하기 위한 MLOps 도구와 권장사항을 소개합니다. MLOps는 프로덕션에서 ML 시스템을 배포, 테스트, 모니터링, 자동화하는 방법론입니다. 학습자는 SDK 레이어에서 Vertex AI Feature Store의 스트리밍 수집을 사용하여 실습을 진행하게 됩니다.

자세히 알아보기

이 과정에서는 Google Cloud에서 프로덕션 ML 시스템 배포, 평가, 모니터링, 운영을 위한 MLOps 도구와 권장사항을 소개합니다. MLOps는 프로덕션에서 ML 시스템을 배포, 테스트, 모니터링, 자동화하는 방법론입니다. 머신러닝 엔지니어링 전문가들은 배포된 모델의 지속적인 개선과 평가를 위해 도구를 사용합니다. 이들이 협력하거나 때론 그 역할을 하는 데이터 과학자는 고성능 모델을 빠르고 정밀하게 배포할 수 있도록 모델을 개발합니다.

자세히 알아보기

This course explores the different products and capabilities of Customer Engagement Suite (CES) and Conversational agents. Additionally, it covers the foundational principles of conversation design to craft engaging and effective experiences that emulate human-like experiences specific to the Chat channel.

자세히 알아보기

이 과정에서는 Vertex AI Feature Store 사용의 이점, ML 모델의 정확성을 개선하는 방법, 가장 유용한 특성을 만드는 데이터 열을 찾는 방법을 살펴봅니다. 이 과정에는 BigQuery ML, Keras, TensorFlow를 사용한 특성 추출에 관한 콘텐츠와 실습도 포함되어 있습니다.

자세히 알아보기

이 과정에서는 TensorFlow 및 Keras를 사용한 ML 모델 빌드, ML 모델의 정확성 개선, 사용 사례 확장을 위한 ML 모델 작성에 대해 다룹니다.

자세히 알아보기

이 과정에서는 먼저 데이터에 관해 논의하면서 데이터 품질을 개선하고 탐색적 데이터 분석을 수행하는 방법을 알아봅니다. Vertex AI AutoML과 코드를 한 줄도 작성하지 않고 ML 모델을 빌드하고, 학습시키고, 배포하는 방법을 설명합니다. 학습자는 Big Query ML의 이점을 이해할 수 있습니다. 그런 다음, 머신러닝(ML) 모델 최적화 방법과 일반화 및 샘플링으로 커스텀 학습용 ML 모델 품질을 평가하는 방법을 다룹니다.

자세히 알아보기

이 과정에서는 생성형 AI 모델과 상호작용하고 비즈니스 아이디어의 프로토타입을 제작하여 프로덕션으로 출시할 수 있는 도구인 Vertex AI Studio를 소개합니다. 몰입감 있는 사용 사례, 흥미로운 강의, 실무형 실습을 통해 프롬프트부터 프로덕션에 이르는 수명 주기를 살펴보고 Vertex AI Studio를 Gemini 멀티모달 애플리케이션, 프롬프트 설계, 프롬프트 엔지니어링, 모델 조정에 활용하는 방법을 알아봅니다. 이 과정의 목표는 Vertex AI Studio로 프로젝트에서 생성형 AI의 잠재력을 활용하는 것입니다.

자세히 알아보기

A Business Leader in Generative AI can articulate the capabilities of core cloud Generative AI products and services and understand how they benefit organizations. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey and how they can leverage Google Cloud's generative AI products to overcome these challenges.

자세히 알아보기

이 과정에서는 예측 및 생성형 AI 프로젝트를 모두 빌드하는 Google Cloud 기반 AI 및 머신러닝(ML) 제품군을 소개합니다. AI 기반, 개발, 솔루션을 모두 포함하여 데이터에서 AI로 이어지는 수명 주기 전반에 걸쳐 사용할 수 있는 기술과 제품, 도구를 살펴봅니다. 이 과정의 목표는 흥미로운 학습 경험과 실제적인 실무형 실습을 통해 데이터 과학자, AI 개발자, ML 엔지니어의 기술 및 지식 역량 강화를 지원하는 것입니다.

자세히 알아보기

In this course, you'll use text embeddings for tasks like classification, outlier detection, text clustering and semantic search. You'll combine semantic search with the text generation capabilities of an LLM to build Retrieval Augmented Generation (RAG) solutions, such as for question-answering systems, using Google Cloud's Vertex AI and Google Cloud databases.

자세히 알아보기

This course explores Google Cloud technologies to create and generate embeddings. Embeddings are numerical representations of text, images, video and audio, and play a pivotal role in many tasks that involve the identification of similar items, like Google searches, online shopping recommendations, and personalized music suggestions. Specifically, you’ll use embeddings for tasks like classification, outlier detection, clustering and semantic search. You’ll combine semantic search with the text generation capabilities of an LLM to build Retrieval Augmented Generation (RAG) systems and question-answering solutions, on your own proprietary data using Google Cloud’s Vertex AI.

자세히 알아보기

이 과정에서는 AI 기반 검색 기술, 도구, 애플리케이션을 살펴봅니다. 벡터 임베딩을 활용하는 시맨틱 검색, 시맨틱 방식과 키워드 방식을 결합한 하이브리드 검색, 그라운딩된 AI 에이전트로서 AI 할루시네이션을 최소화하는 검색 증강 생성(RAG)에 대해 알아보세요. Vertex AI 벡터 검색을 활용해 지능형 검색 엔진을 빌드하는 실무 경험을 쌓을 수 있습니다.

자세히 알아보기

In this course, you'll use text embeddings for tasks like classification, outlier detection, text clustering and semantic search. You'll combine semantic search with the text generation capabilities of an LLM to build Retrieval Augmented Generation (RAG) solutions, such as for question-answering systems, using Google Cloud's Vertex AI and Google Cloud databases.

자세히 알아보기

Learn how to design, develop, and deploy customer conversational solutions using Contact Center Artificial Intelligence (CCAI). You'll also learn some best practices for integrating conversational solutions with your existing contact center software, establishing a framework for human agent assistance, and implementing solutions securely and at scale.

자세히 알아보기

Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.

자세히 알아보기

This content is deprecated. Please see the latest version of the course, here.

자세히 알아보기

이 과정에서는 생성형 AI 모델과 상호작용하고 비즈니스 아이디어의 프로토타입을 제작하여 프로덕션으로 출시할 수 있는 도구인 Vertex AI Studio를 소개합니다. 몰입감 있는 사용 사례, 흥미로운 강의, 실무형 실습을 통해 프롬프트부터 프로덕션에 이르는 수명 주기를 살펴보고 Vertex AI Studio를 Gemini 멀티모달 애플리케이션, 프롬프트 설계, 프롬프트 엔지니어링, 모델 조정에 활용하는 방법을 알아봅니다. 이 과정의 목표는 Vertex AI Studio로 프로젝트에서 생성형 AI의 잠재력을 활용하는 것입니다.

자세히 알아보기

이 과정에서는 최근 이미지 생성 분야에서 가능성을 보여준 머신러닝 모델 제품군인 확산 모델을 소개합니다. 확산 모델은 열역학을 비롯한 물리학에서 착안했습니다. 지난 몇 년 동안 확산 모델은 연구계와 업계 모두에서 주목을 받았습니다. 확산 모델은 Google Cloud의 다양한 최신 이미지 생성 모델과 도구를 뒷받침합니다. 이 과정에서는 확산 모델의 이론과 Vertex AI에서 이 모델을 학습시키고 배포하는 방법을 소개합니다.

자세히 알아보기

이 과정에서는 딥 러닝을 사용해 이미지 캡션 모델을 만드는 방법을 알아봅니다. 인코더 및 디코더와 모델 학습 및 평가 방법 등 이미지 캡션 모델의 다양한 구성요소에 대해 알아봅니다. 이 과정을 마치면 자체 이미지 캡션 모델을 만들고 이를 사용해 이미지의 설명을 생성할 수 있게 됩니다.

자세히 알아보기

이 과정은 기계 번역, 텍스트 요약, 질의 응답과 같은 시퀀스-투-시퀀스(Seq2Seq) 작업에 널리 사용되는 강력한 머신러닝 아키텍처인 인코더-디코더 아키텍처에 대한 개요를 제공합니다. 인코더-디코더 아키텍처의 기본 구성요소와 이러한 모델의 학습 및 서빙 방법에 대해 알아봅니다. 해당하는 실습 둘러보기에서는 TensorFlow에서 시를 짓는 인코더-디코더 아키텍처를 처음부터 간단하게 구현하는 코딩을 해봅니다.

자세히 알아보기

이 과정은 Transformer 아키텍처와 BERT(Bidirectional Encoder Representations from Transformers) 모델을 소개합니다. 셀프 어텐션 메커니즘 같은 Transformer 아키텍처의 주요 구성요소와 이 아키텍처가 BERT 모델 빌드에 사용되는 방식에 관해 알아봅니다. 또한 텍스트 분류, 질문 답변, 자연어 추론과 같이 BERT를 활용할 수 있는 다양한 작업에 대해서도 알아봅니다. 이 과정은 완료하는 데 대략 45분이 소요됩니다.

자세히 알아보기

이 과정에서는 신경망이 입력 시퀀스의 특정 부분에 집중할 수 있도록 하는 강력한 기술인 주목 메커니즘을 소개합니다. 주목 메커니즘의 작동 방식과 이 메커니즘을 다양한 머신러닝 작업(기계 번역, 텍스트 요약, 질문 답변 등)의 성능을 개선하는 데 활용하는 방법을 알아봅니다.

자세히 알아보기

This course on Integrate Vertex AI Search and Conversation into Voice and Chat Apps is composed of a set of labs to give you a hands on experience to interacting with new Generative AI technologies. You will learn how to create end-to-end search and conversational experiences by following examples. These technologies complement predefined intent-based chat experiences created in Dialogflow with LLM-based, generative answers that can be based on your own data. Also, they allow you to porvide enterprise-grade search experiences for internal and external websites to search documents, structure data and public websites.

자세히 알아보기

In this course you will learn how to use the new generative AI features in Dialogflow CX to create virtual agents that can have more natural and engaging conversations with customers. Discover how to deploy generative fallback responses to gracefully handle errors and omissions in customer conversations, deploy generators to increase intent coverage, and structure, ingest, and manage data in a data store. And explore how to deploy and maintain generative AI agents using your data, and deploy and maintain hybrid agents in combination with existing intent-based design paradigms.

자세히 알아보기

(This course was previously named Multimodal Prompt Engineering with Gemini and PaLM) This course teaches how to use Vertex AI Studio, a Google Cloud console tool for rapidly prototyping and testing generative AI models. You learn to test sample prompts, design your own prompts, and customize foundation models to handle tasks that meet your application's needs. Whether you are looking for text, chat, code, image or speech generative experiences Vertex AI Studio offers you an interface to work with and APIs to integrate your production application.

자세히 알아보기

This course will help ML Engineers, Developers, and Data Scientists implement Large Language Models for Generative AI use cases with Vertex AI. The first two modules of this course contain links to videos and prerequisite course materials that will build your knowledge foundation in Generative AI. Please do not skip these modules. The advanced modules in this course assume you have completed these earlier modules.

자세히 알아보기

기업에서 인공지능과 머신러닝의 사용이 계속 증가함에 따라 책임감 있는 빌드의 중요성도 커지고 있습니다. 대부분의 기업은 책임감 있는 AI를 실천하기가 말처럼 쉽지 않습니다. 조직에서 책임감 있는 AI를 운영하는 방법에 관심이 있다면 이 과정이 도움이 될 것입니다. 이 과정에서 책임감 있는 AI를 위해 현재 Google Cloud가 기울이고 있는 노력, 권장사항, Google Cloud가 얻은 교훈을 알아보면 책임감 있는 AI 접근 방식을 구축하기 위한 프레임워크를 수립할 수 있을 것입니다.

자세히 알아보기

Introduction to Generative AI, Introduction to Large Language Models, Introduction to Responsible AI 과정을 완료하고 기술 배지를 획득하세요. 최종 퀴즈를 풀어보고 생성형 AI의 기본 개념을 제대로 이해했는지 확인해 보세요. 기술 배지는 Google Cloud 제품 및 서비스에 대한 지식을 숙지한 사람에게 Google Cloud에서 발급하는 디지털 배지입니다. 프로필을 공개하고 기술 배지를 소셜 미디어 프로필에 추가하여 공유하세요.

자세히 알아보기

책임감 있는 AI란 무엇이고 이것이 왜 중요하며 Google에서는 어떻게 제품에 책임감 있는 AI를 구현하고 있는지 설명하는 입문용 마이크로 학습 과정입니다. Google의 7가지 AI 원칙도 소개합니다.

자세히 알아보기

이 과정은 입문용 마이크로 학습 과정으로, 대규모 언어 모델(LLM)이란 무엇이고, LLM을 활용할 수 있는 사용 사례로는 어떤 것이 있으며, 프롬프트 조정을 사용해 LLM 성능을 개선하는 방법은 무엇인지 알아봅니다. 또한 자체 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.

자세히 알아보기

Welcome to "CCAI Operations and Implementation", the fourth course in the "Customer Experiences with Contact Center AI" series. In this course, learn some best practices for integrating conversational solutions with your existing contact center software, establishing a framework for human agent assistance, and implementing solutions securely and at scale. In this course, you'll be introduced to Agent Assist and the technology it uses so you can delight your customers with the efficiencies and accuracy of services provided when customers require human agents, connectivity protocols, APIs, and platforms which you can use to create an integration between your virtual agent and the services already established for your business, Dialogflow's Environment Management tool for deployment of different versions of your virtual agent for various purposes, compliance measures and regulations you should be aware of when bringing your virtual agent to production, and you'll be given tips from virtua…

자세히 알아보기

Welcome to "Virtual Agent Development in Dialogflow CX for Software Devs", the third course in the "Customer Experiences with Contact Center AI" series. In this course, learn how to develop more customized customer conversational solutions using Contact Center Artificial Intelligence (CCAI). In this course, you'll be introduced to more advanced and customized handling for virtual agent conversations that need to look up and convey dynamic data, and methods available to you for testing your virtual agent and logs which can be useful for understanding issues that arise. This is an intermediate course, intended for learners with the following type of role: Software developers: Codes computer software in a programming language (e.g., C++, Python, Javascript) and often using an SDK/API.

자세히 알아보기

Welcome to "Virtual Agent Development in Dialogflow CX for Citizen Devs", the second course in the "Customer Experiences with Contact Center AI" series. In this course, learn how to develop customer conversational solutions using Contact Center Artificial Intelligence (CCAI). In this course, you'll be introduced to adding voice (telephony) as a communication channel to your virtual agent conversations using Dialogflow CX.

자세히 알아보기

생성형 AI란 무엇이고 어떻게 사용하며 전통적인 머신러닝 방법과는 어떻게 다른지 설명하는 입문용 마이크로 학습 과정입니다. 직접 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.

자세히 알아보기

Welcome to "CCAI Conversational Design Fundamentals", the first course in the "Customer Experiences with Contact Center AI" series. In this course, learn how to design customer conversational solutions using Contact Center Artificial Intelligence (CCAI). You will be introduced to CCAI and its three pillars (Dialogflow, Agent Assist, and Insights), and the concepts behind conversational experiences and how the study of them influences the design of your virtual agent. After taking this course you will be prepared to take your virtual agent design to the next level of intelligent conversation.

자세히 알아보기

Earn a skill badge by completing the Create Conversational AI Agents with Dialogflow CX quest, where you will learn how to create a conversational virtual agent, including how to: define intents and entities, use versions and environments, create conversational branching, and use IVR features. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge quest, and the final assessment challenge lab, to receive a skill badge that you can share with your network.

자세히 알아보기