Vatsal Aima
Date d'abonnement : 2023
Ligue de bronze
12095 points
Date d'abonnement : 2023
Ce cours présente les modèles de diffusion, une famille de modèles de machine learning qui s'est récemment révélée prometteuse dans le domaine de la génération d'images. Les modèles de diffusion trouvent leur origine dans la physique, et plus précisément dans la thermodynamique. Au cours des dernières années, ils ont gagné en popularité dans la recherche et l'industrie. Ils sont à la base de nombreux modèles et outils Google Cloud avancés de génération d'images. Ce cours vous présente les bases théoriques des modèles de diffusion, et vous explique comment les entraîner et les déployer sur Vertex AI.
Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA responsable, souligne son importance et décrit comment Google l'implémente dans ses produits. Il présente également les sept principes de l'IA de Google.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce que sont les grands modèles de langage (LLM). Il inclut des cas d'utilisation et décrit comment améliorer les performances des LLM grâce au réglage des requêtes. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.
A Business Leader in Generative AI can articulate the capabilities of core cloud Generative AI products and services and understand how they benefit organizations. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey and how they can leverage Google Cloud's generative AI products to overcome these challenges.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA générative, décrit à quoi elle sert et souligne ce qui la distingue des méthodes de machine learning traditionnel. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.
Dans ce cours, nous définirons ce qu'est le machine learning et ce qu'il peut apporter à votre entreprise. Vous verrez quelques démonstrations de l'utilisation du ML et découvrirez ses termes clés, comme instances, caractéristiques et étiquettes. Lors des ateliers interactifs, vous vous entraînerez à appeler les API de ML préentrainées disponibles et à construire vos propres modèles de machine learning en utilisant simplement SQL avec BigQuery ML.
Le troisième cours de cette série s'intitule "Achieving Advanced Insights with BigQuery". Notre objectif est ici d'approfondir vos connaissances en SQL en abordant en détail les fonctions avancées et en vous apprenant à décomposer les requêtes complexes en étapes faciles à gérer. Nous allons étudier l'architecture interne de BigQuery (stockage segmenté basé sur des colonnes), ainsi que des concepts SQL avancés tels que les champs imbriqués et répétés, en utilisant pour cela des objets ARRAY et STRUCT. Pour finir, nous verrons comment optimiser les performances de vos requêtes et sécuriser vos données à l'aide des vues autorisées.Une fois que vous aurez terminé ce cours, inscrivez-vous au cours "Applying Machine Learning to Your Data with Google Cloud".
Ceci est le deuxième cours de la série "Data to Insights". Ici, nous verrons comment ingérer de nouveaux ensembles de données externes dans BigQuery et les visualiser avec Looker Studio. Nous aborderons également des concepts SQL intermédiaires, tels que les jointures et les unions de plusieurs tables, qui vous permettront d'analyser les données de différentes sources. Remarque : Même si vous avez des connaissances en SQL, certaines spécificités de BigQuery (comme la gestion du cache de requêtes et des caractères génériques de table) peuvent ne pas vous être familières.Une fois que vous aurez terminé ce cours, inscrivez-vous au cours "Achieving Advanced Insights with BigQuery".
Ce cours décrit les problématiques courantes auxquelles se confrontent les analystes de données et explique comment les résoudre à l'aide des outils de big data disponibles sur Google Cloud. Vous découvrirez quelques notions de SQL et apprendrez comment utiliser BigQuery et Dataprep pour analyser et transformer vos ensembles de données. Il s'agit du premier cours de la série "From Data to Insights with Google Cloud". Après l'avoir terminé, inscrivez-vous au cours "Creating New BigQuery Datasets and Visualizing Insights".
Ce cours présente les produits et services Google Cloud pour le big data et le machine learning compatibles avec le cycle de vie "des données à l'IA". Il explore les processus, défis et avantages liés à la création d'un pipeline de big data et de modèles de machine learning avec Vertex AI sur Google Cloud.