Frederic Bouy
Member since 2021
Silver League
34654 points
Member since 2021
Complete the Edit images with Imagen skill badge to demonstrate your skills with Imagen's mask modes and editing modes to edit images according to certain prompts. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!
Generate engaging media with Google's foundation models for media. Create new images with Imagen, or edit your existing photos by adding details or outpainting to create a wider view. Replace backgrounds to put your products in new scenes. And learn the basics of generating videos with Veo!
Complete the Extend Gemini with controlled generation and Tool use skill badge to demonstrate your proficiency in connecting models to external tools and APIs. This allows models to augment their knowledge, extend their capabilities and interact with external systems to take actions such as sending an email. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!"
An LLM-based application can process language in a way that resembles thought. But if you want to extend its capabilities to take actions by running other functions you have coded, you will need to use function calling. This can also be referred to as tool use. Additionally, you can give a model the ability to search Google or search a data store of documents to ground its responses. In other words, to base its answers on that information. In this course, you’ll explore these concepts.
Learn a variety of strategies and techniques to engineer effective prompts for generative models
Learn how to leverage Gemini multimodal capabilities to process and generate text, images, and audio and to integrate Gemini through APIs to perform tasks such as content creation and summarization.
Gen AI Agents: Transform Your Organization is the fifth and final course of the Gen AI Leader learning path. This course explores how organizations can use custom gen AI agents to help tackle specific business challenges. You gain hands-on practice building a basic gen AI agent, while exploring the components of these agents, such as models, reasoning loops, and tools.
Transform Your Work With Gen AI Apps is the fourth course of the Gen AI Leader learning path. This course introduces Google’s gen AI applications, such as Google Workspace with Gemini and NotebookLM. It guides you through concepts like grounding, retrieval augmented generation, constructing effective prompts and building automated workflows.
Gen AI: Navigate the Landscape is the third course of the Gen AI Leader learning path. Gen AI is changing how we work and interact with the world around us. But as a leader, how can you harness its power to drive real business outcomes? In this course, you explore the different layers of building gen AI solutions, Google Cloud’s offerings, and the factors to consider when selecting a solution.
Gen AI: Unlock Foundational Concepts is the second course of the Gen AI Leader learning path. In this course, you unlock the foundational concepts of generative AI by exploring the differences between AI, ML, and gen AI, and understanding how various data types enable generative AI to address business challenges. You also gain insights into Google Cloud strategies to address the limitations of foundation models and the key challenges for responsible and secure AI development and deployment.
Gen AI: Beyond the Chatbot is the first course of the Gen AI Leader learning path and has no prerequisites. This course aims to move beyond the basic understanding of chatbots to explore the true potential of generative AI for your organization. You explore concepts like foundation models and prompt engineering, which are crucial for leveraging the power of gen AI. The course also guides you through important considerations you should make when developing a successful gen AI strategy for your organization.
Unite Google’s expertise in search and AI with Gemini Enterprise, a powerful tool designed to help employees find specific information from document storage, email, chats, ticketing systems, and other data sources, all from a single search bar. The Gemini Enterprise assistant can also help brainstorm, research, outline documents, and take actions like inviting coworkers to a calendar event to accelerate knowledge work and collaboration of all kinds. (Please note Gemini Enterprise was previously named Google Agentspace, there may be references to the previous product name in this course.)
This Infrastructure Modernization course consists of a series of advanced-level labs designed to validate your proficiency in modernizing a customer's IT infrastructure using Google Cloud. Each lab presents a set of the required tasks that you must complete with minimal assistance. The labs in this course have replaced the previous L300 Infrastructure Modernization Challenge Lab. If you have already completed the Challenge Lab as part of your L300 accreditation requirement, it will be carried over and count towards your L300 status. You must score 80% or higher for each lab to complete this course, and fulfill your CEPF L300 Infrastructure Modernization requirement. For technical issues with a Challenge Lab, please raise a Buganizer ticket using this CEPF Buganizer template: go/cepfl300labsupport
This course on Integrate Vertex AI Search and Conversation into Voice and Chat Apps is composed of a set of labs to give you a hands on experience to interacting with new Generative AI technologies. You will learn how to create end-to-end search and conversational experiences by following examples. These technologies complement predefined intent-based chat experiences created in Dialogflow with LLM-based, generative answers that can be based on your own data. Also, they allow you to porvide enterprise-grade search experiences for internal and external websites to search documents, structure data and public websites.
Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.
(Previously named "Developing apps with Vertex AI Agent Builder: Search". Please note there maybe instances in this course where previous product names and titles are used) Enterprises of all sizes have trouble making their information readily accessible to employees and customers alike. Internal documentation is frequently scattered across wikis, file shares, and databases. Similarly, consumer-facing sites often offer a vast selection of products, services, and information, but customers are frustrated by ineffective site search and navigation capabilities. This course teaches you to use AI Applications to integrate enterprise-grade generative AI search.
The Generative AI Explorer - Vertex Quest is a collection of labs on how to use Generative AI on Google Cloud. Through the labs, you will learn about how to use the models in the Vertex AI PaLM API family, including text-bison, chat-bison, and textembedding-gecko. You will also learn about prompt design, best practices, and how it can be used for ideation, text classification, text extraction, text summarization, and more. You will also learn how to tune a foundation model by training it via Vertex AI custom training and deploy it to a Vertex AI endpoint.
The Google Cloud Rapid Migration & Modernization Program (RaMP) is a holistic, end-to-end migration/modernization program that helps customers & partners leverage expertise and best practices, lower risk, control costs, and simplify a customer's path to cloud success. This course will give an overview of the program and some of the tools and best practices available to support customer migrations & modernizations.
As the use of enterprise Artificial Intelligence and Machine Learning continues to grow, so too does the importance of building it responsibly. A challenge for many is that talking about responsible AI can be easier than putting it into practice. If you’re interested in learning how to operationalize responsible AI in your organization, this course is for you. In this course, you will learn how Google Cloud does this today, together with best practices and lessons learned, to serve as a framework for you to build your own responsible AI approach.
רוצים לקבל תג מיומנות? אפשר להשלים את הקורסים Introduction to Generative AI, Introduction to Large Language Models ו-Introduction to Responsible AI. מעבר של המבחן המסכם מוכיח שהבנתם את המושגים הבסיסיים בבינה מלאכותית גנרטיבית. 'תג מיומנות' הוא תג דיגיטלי ש-Google מנפיקה, שמוכיח שאתם מכירים את המוצרים והשירותים של Google Cloud. כדי לשתף את תג המיומנות אפשר להפוך את הפרופיל שלכם לגלוי לכולם ולהוסיף אותו לפרופיל שלכם ברשתות חברתיות.
זהו קורס מבוא ממוקד שמטרתו להסביר מהי אתיקה של בינה מלאכותית, למה היא חשובה ואיך Google נוהגת לפי כללי האתיקה של הבינה המלאכותית במוצרים שלה. מוצגים בו גם 7 עקרונות ה-AI של Google.
בקורס הזה נלמד על Generative AI Studio, מוצר ב-Vertex AI שעוזר ליצור אבות טיפוס למודלים של בינה מלאכותית גנרטיבית, כדי להשתמש בהם ולהתאים אותם לפי הצרכים שלכם. באמצעות הדגמה של המוצר עצמו, נלמד מהו Generative AI Studio, מהם הפיצ'רים והאפשרויות שלו, ואיך להשתמש בו. בסוף הקורס יהיה שיעור Lab מעשי לתרגול של מה שנלמד, ובוחן לבדיקת הידע.
בקורס הזה תלמדו איך ליצור מודל הוספת כיתוב לתמונה באמצעות למידה עמוקה (Deep Learning). אתם תלמדו על הרכיבים השונים במודל הוספת כיתוב לתמונה, כמו המקודד והמפענח, ואיך לאמן את המודל ולהעריך את הביצועים שלו. בסוף הקורס תוכלו ליצור מודלים להוספת כיתוב לתמונה ולהשתמש בהם כדי ליצור כיתובים לתמונות
בקורס הזה נציג את הארכיטקטורה של טרנספורמרים ואת המודל של ייצוגים דו-כיווניים של מקודד מטרנספורמרים (BERT). תלמדו על החלקים השונים בארכיטקטורת הטרנספורמר, כמו מנגנון תשומת הלב, ועל התפקיד שלו בבניית מודל BERT. תלמדו גם על המשימות השונות שאפשר להשתמש ב-BERT כדי לבצע אותן, כמו סיווג טקסטים, מענה על שאלות והֶקֵּשׁ משפה טבעית. נדרשות כ-45 דקות כדי להשלים את הקורס הזה.
בקורס נלמד על מנגנון תשומת הלב, שיטה טובה מאוד שמאפשרת לרשתות נוירונים להתמקד בחלקים ספציפיים ברצף הקלט. נלמד איך עובד העיקרון של תשומת הלב, ואיך אפשר להשתמש בו כדי לשפר את הביצועים במגוון משימות של למידת מכונה, כולל תרגום אוטומטי, סיכום טקסט ומענה לשאלות.
בקורס הזה לומדים בקצרה על ארכיטקטורת מקודד-מפענח, ארכיטקטורה עוצמתית ונפוצה ללמידת מכונה שמשתמשים בה במשימות של רצף לרצף, כמו תרגום אוטומטי, סיכום טקסט ומענה לשאלות. תלמדו על החלקים השונים בארכיטקטורת מקודד-מפענח, איך לאמן את המודלים האלה ואיך להשתמש בהם. בהדרכה המפורטת המשלימה בשיעור ה-Lab תקודדו ב-TensorFlow תרחיש שימוש פשוט בארכיטקטורת מקודד-מפענח: כתיבת שיר מאפס.
בקורס נלמד על מודלים של דיפוזיה, משפחת מודלים של למידת מכונה שיצרו הרבה ציפיות לאחרונה בתחום של יצירת תמונות. מודלים של דיפוזיה שואבים השראה מפיזיקה, וספציפית מתרמודינמיקה. בשנים האחרונות, מודלים של דיפוזיה הפכו לפופולריים גם בתחום המחקר וגם בתעשייה. מודלים של דיפוזיה עומדים מאחורי הרבה מהכלים והמודלים החדשניים ליצירת תמונות ב-Google Cloud. בקורס הזה נלמד על התיאוריה שמאחורי מודלים של דיפוזיה, ואיך לאמן ולפרוס אותם ב-Vertex AI.
Good news! There’s a new updated version of this learning path available for you!Open the new Professional Cloud Architect Certification Learning Path to begin, once you’ve selected the new path all your current progress will be reflected in the new version.
זהו קורס מבוא ממוקד שבוחן מהם מודלים גדולים של שפה (LLM), איך משתמשים בהם בתרחישים שונים לדוגמה ואיך אפשר לשפר את הביצועים שלהם באמצעות כוונון של הנחיות. הוא גם כולל הסבר על הכלים של Google שיעזרו לכם לפתח אפליקציות בינה מלאכותית גנרטיבית משלכם.
זהו קורס מבוא ממוקד שמטרתו להסביר מהי בינה מלאכותית גנרטיבית, איך משתמשים בה ובמה היא שונה משיטות מסורתיות של למידת מכונה. הוא גם כולל הסבר על הכלים של Google שיעזרו לכם לפתח אפליקציות בינה מלאכותית גנרטיבית משלכם.
מהי טכנולוגיית ענן ומהו מדע הנתונים? וחשוב יותר, איך הם יכולים לעזור לכם, לצוות שלכם ולעסק שלכם? קורס המבוא הזה בנושא טרנספורמציה דיגיטלית מתאים למי שרוצה ללמוד על טכנולוגיית הענן כדי להתמקצע ולהצטיין בעבודתו וכדי לעזור בפיתוח העתיד של העסק. בקורס יוגדרו מונחי יסוד כגון הענן, נתונים וטרנספורמציה דיגיטלית. בנוסף, נבחן דוגמאות של חברות מרחבי העולם שמשתמשות בטכנולוגיית הענן כדי לבצע טרנספורמציה בעסק. הקורס כולל סקירה של סוגי ההזדמנויות שיש לחברות ושל האתגרים הנפוצים שחברות מתמודדות איתם במהלך טרנספורמציה דיגיטלית. הקורס גם מדגים איך עמודי התווך של פתרונות Google Cloud יכולים לעזור בתהליך. חשוב לומר: טרנספורמציה דיגיטלית לא קשורה רק לשימוש בטכנולוגיות חדשות. כדי הטרנספורמציה תהיה מלאה, ארגונים צריכים גם ליישם חדשנות ולפתח דפוס חשיבה שמקדם חדשנות בכל התחומים והצוותים. השיטות המומלצות המתוארות בקורס יעזרו לכם להשיג את המטרה הזו.
Earn a skill badge by completing the Detect Manufacturing Defects using Visual Inspection AI course, where you learn how to use Visual Inspection AI to deploy a solution artifact and test that it can successfully identify defects in a manufacturing process.
הקורס בוחן ניהול עלויות, אבטחה ותפעול בענן. ראשית, מוסבר איך עסקים יכולים לרכוש שירותי IT מספק שירותי ענן ולשמר חלק מהתשתית שלהם או לבחור לא לשמר אותה בכלל. שנית, הקורס מתאר איך האחריות על אבטחת נתונים מתחלקת בין ספק שירותי הענן לעסק, וסוקר את אבטחת ההגנה לעומק (defense-in-depth) שמובנית ב-Google Cloud. לבסוף, הקורס מתייחס לכך שצוותי IT ומנהלי העסק צריכים לשנות את החשיבה על ניהול משאבי IT בענן, ונוגע באופן שבו כלי ניטור המשאבים ב-Google Cloud יכולים לסייע להם לשמור על שליטה וניראות בסביבת הענן שלהם.
בארגונים מסורתיים רבים משתמשים במערכות ובאפליקציות מדורות קודמים, וקשה לבצע באמצעותן התאמה לעומס ופעולות מהירות הדרושות כדי לעמוד בציפיות מודרניות של לקוחות. מנהיגים עסקיים וקובעי מדיניות IT צריכים כל הזמן לבחור בין תחזוקה של מערכות מדורות קודמים לבין השקעה במוצרים ובשירותים חדשים. בקורס הזה נבחן את האתגרים הנובעים משימוש בתשתית IT מיושנת, ואיך בעלי עסקים יכולים לבצע מודרניזציה של תשתיות בעזרת טכנולוגיית ענן. הקורס מתחיל בהבנה מעמיקה של אפשרויות המחשוב השונות הזמינות בענן ופירוט היתרונות של כל אחת מהאפשרויות. לאחר מכן נבחן את האפשרויות למודרניזציה של האפליקציות ושל ממשקי API (ממשק תכנות יישומים). בקורס מתוארים גם מגוון פתרונות של Google Cloud שיכולים לשפר את תהליך פיתוח המערכות וניהולן בעסקים שונים, כמו Compute Engine, App Engine ו-Apigee.
טכנולוגיית הענן לבדה מספקת לעסק חלק קטן בלבד מהערך האמיתי שלה. כשהיא משולבת עם נתונים בנפח רב מאוד, נוצרת העוצמה שמאפשרת להפיק ערך וליצור חוויות חדשות ללקוחות. במסגרת הקורס הזה תלמדו מהם נתונים, איך השתמשו בהם בעבר בחברות לצורך קבלת החלטות ולמה הם קריטיים כל כך ללמידה חישובית. בנוסף, בקורס הזה יוצגו ללומדים מושגים טכניים כמו נתונים מובְנים ולא מובְנים, מסד נתונים, מחסן נתונים (data warehouse) ואגמי נתונים (data lakes). בהמשך, הקורס יעסוק במוצרי Google Cloud הנפוצים ביותר בתחום הנתונים, ובמוצרים כאלה ששיעור השימוש בהם גדל במהירות הרבה ביותר.
מהי טכנולוגיית ענן ומהו מדע הנתונים? וחשוב יותר, איך הם יכולים לעזור לכם, לצוות שלכם ולעסק שלכם? קורס המבוא הזה בנושא טרנספורמציה דיגיטלית מתאים למי שרוצה ללמוד על טכנולוגיית הענן כדי להתמקצע ולהצטיין בעבודתו וכדי לעזור בפיתוח העתיד של העסק. בקורס יוגדרו מונחי יסוד כגון הענן, נתונים וטרנספורמציה דיגיטלית. בנוסף, נבחן דוגמאות של חברות מרחבי העולם שמשתמשות בטכנולוגיית הענן כדי לבצע טרנספורמציה בעסק. הקורס כולל סקירה של סוגי ההזדמנויות שיש לחברות ושל האתגרים הנפוצים שחברות מתמודדות איתם במהלך טרנספורמציה דיגיטלית. הקורס גם מדגים איך עמודי התווך של פתרונות Google Cloud יכולים לעזור בתהליך. חשוב לומר: טרנספורמציה דיגיטלית לא קשורה רק לשימוש בטכנולוגיות חדשות. כדי הטרנספורמציה תהיה מלאה, ארגונים צריכים גם ליישם חדשנות ולפתח דפוס חשיבה שמקדם חדשנות בכל התחומים והצוותים. השיטות המומלצות המתוארות בקורס יעזרו לכם להשיג את המטרה הזו.
Welcome to the TechCon Lab Bash 2022 hands-on lab event! Below, you are presented with a series of labs ranging from Level 100 to Level 400. Level 100 labs are video walkthroughs of the lab content. Level 200 labs are traditional Learning Labs which provide you with step-by-step instructions. Level 300 are Challenge Labs which provide you with limited instructions and a hands-on technical scenario to solve. Level 400 are break/fix labs where you must identify the issues in the environment and resolve them.