Inscreva-se Fazer login

Narendra Ghosh

Participante desde 2022

Liga Ouro

32480 pontos
Como trabalhar com modelos do Gemini no BigQuery Earned Jul 30, 2025 EDT
Usar o BigQuery ML para inferência Earned Jul 30, 2025 EDT
Gemini para cientistas e analistas de dados Earned Jul 30, 2025 EDT
Developing Applications with Cloud Run on Google Cloud: Fundamentals Earned Jul 22, 2025 EDT
Geração de registros e monitoramento no Google Cloud Earned Jul 22, 2025 EDT
Launching into Machine Learning - Português Brasileiro Earned Apr 21, 2025 EDT
Aumento de Produtividade com Gemini no BigQuery Earned Mar 12, 2025 EDT
Introdução à engenharia de dados no Google Cloud Earned Mar 12, 2025 EDT
Introdução ao Vertex AI Studio Earned Feb 17, 2025 EST
IA responsável: como aplicar os princípios de IA com o Google Cloud Earned Feb 17, 2025 EST
Introdução à IA responsável Earned Feb 17, 2025 EST
Trabalhar com Notebooks na Vertex AI Earned Feb 14, 2025 EST
Guia de estudo para Engenheiro profissional de aprendizado de máquina Earned Feb 12, 2025 EST
Observabilidade no Google Cloud Earned Feb 11, 2025 EST
Generative AI for Business Leaders Earned Feb 11, 2025 EST
Introdução à IA e ao machine learning no Google Cloud Earned Sep 17, 2024 EDT
Infraestrutura dinâmica do Google Cloud: escalonamento e automação Earned May 7, 2024 EDT
Infraestrutura básica do Google Cloud: serviços principais Earned May 2, 2024 EDT
Introdução à IA generativa Earned Aug 10, 2023 EDT
Infraestrutura do Google Cloud confiável: criar e processar Earned Mar 16, 2023 EDT
Preparing for Your Professional Cloud Architect Journey - Português Brasileiro Earned Mar 3, 2023 EST
Infraestrutura básica do Google Cloud: fundamentos Earned Mar 1, 2023 EST
Introdução ao Google Kubernetes Engine Earned Mar 1, 2023 EST
DEPRECATED Cloud Architecture Earned Feb 24, 2023 EST
Preparação para sua jornada da certificação Professional Data Engineer Earned Feb 21, 2023 EST
Processamento de dados sem servidor com o Dataflow: operações Earned Feb 8, 2023 EST
Processamento de dados sem servidor com o Dataflow: desenvolvimento de pipelines Earned Feb 7, 2023 EST
Como criar sistemas de análise de streaming resilientes no Google Cloud Earned Feb 1, 2023 EST
Como criar pipelines de dados em lote no Google Cloud Earned Jan 31, 2023 EST
Como modernizar data lakes e data warehouses com o Google Cloud Earned Jan 27, 2023 EST
Dados de engenharia para modelagem preditiva com o BigQuery ML Earned Jan 25, 2023 EST
Implementar o balanceamento de carga no Compute Engine Earned Dec 19, 2022 EST
Processamento de dados sem servidor com o Dataflow: fundamentos Earned Nov 11, 2022 EST
Smart Analytics, Machine Learning, and AI on Google Cloud - Português Brasileiro Earned Nov 11, 2022 EST
Google Cloud Big Data and Machine Learning Fundamentals - Português Brasileiro Earned Nov 9, 2022 EST
Noções básicas do Google Cloud: infraestrutura principal Earned May 10, 2022 EDT

Este curso demonstra como usar modelos de ML/IA para tarefas generativas no BigQuery. Nele, você vai conhecer o fluxo de trabalho para solucionar um problema comercial com modelos do Gemini utilizando um caso de uso prático que envolve gestão de relacionamento com o cliente. Para facilitar a compreensão, o curso também proporciona instruções detalhadas de soluções de programação que usam consultas SQL e notebooks Python.

Saiba mais

Conheça o BigQuery ML para inferência, saiba por que ele é a melhor opção para analistas de dados, os casos de uso dele e os modelos de ML compatíveis. Você também vai aprender a criar e gerenciar esses modelos de ML no BigQuery.

Saiba mais

Neste curso, você vai entender como o Gemini, um colaborador com tecnologia de IA generativa do Google Cloud, ajuda a analisar os dados dos clientes e a prever as vendas de produtos. Além disso, você vai aprender a identificar, categorizar e desenvolver novos clientes usando seus dados no BigQuery. Usando laboratórios práticos, você vai descobrir como o Gemini melhora a análise de dados e os fluxos de trabalho de machine learning. A Duet AI agora é o Gemini, nosso modelo de última geração.

Saiba mais

This course introduces the Cloud Run serverless platform for running applications. In this course, you learn about the fundamentals of Cloud Run, its resource model and the container lifecycle. You learn about service identities, how to control access to services, and how to develop and test your application locally before deploying it to Cloud Run. The course also teaches you how to integrate with other services on Google Cloud so you can build full-featured applications.

Saiba mais

Este curso ensina aos participantes técnicas de monitoramento e melhoria de infraestrutura e desempenho de aplicativos no Google Cloud. Com uma combinação de apresentações, demonstrações, laboratórios práticos e estudos de caso do mundo real, os participantes ganham experiência com monitoramento de pilha completa, gerenciamento e análise de registro em tempo real, depuração de código em produção, rastreamento de gargalos de desempenho de aplicativos, caracterização de perfil de CPU e uso de memória.

Saiba mais

O curso começa com a seguinte discussão: como melhorar a qualidade dos dados e fazer uma análise exploratória deles? Descrevemos o AutoML na Vertex AI e como criar, treinar e implantar um modelo de ML sem escrever nenhuma linha de código. Você vai conhecer os benefícios do BigQuery ML. Depois vamos falar sobre como otimizar um modelo de machine learning (ML) e como a generalização e a amostragem podem ajudar na avaliação de qualidade dos modelos de ML em treinamentos personalizados.

Saiba mais

Neste curso, vamos conhecer o Gemini no BigQuery, um pacote de recursos com tecnologia de IA que auxilia no fluxo de trabalho de dados para inteligência artificial. Esses recursos incluem preparação e análise detalhada de dados, solução de problemas e geração de código, além da descoberta e visualização do fluxo de trabalho. Com explicações conceituais, um caso de uso prático e o laboratório, o curso ensina aos profissionais de dados como aumentar a produtividade e acelerar o pipeline de desenvolvimento.

Saiba mais

Neste curso, vamos falar sobre a engenharia de dados no Google Cloud, os papéis e responsabilidades dos engenheiros de dados e como alinhá-los aos produtos do Google Cloud. Além disso, você aprenderá a lidar com os desafios da engenharia de dados.

Saiba mais

Neste curso, vamos conhecer o Vertex AI Studio, uma ferramenta para interagir com modelos de IA generativa, prototipar ideias comerciais e colocá-las em produção. Com a ajuda de um caso de uso imersivo, lições interessantes e um laboratório, você vai conhecer o ciclo de vida do comando à produção, além de usar o Vertex AI Studio para aplicativos multimodais do Gemini, design e engenharia de comandos e ajuste de modelos. O objetivo é permitir que você descubra todo o potencial da IA generativa nos seus projetos com o Vertex AI Studio.

Saiba mais

Quanto maior é o uso da inteligência artificial empresarial e do machine learning, mais importante é desenvolvê-los de maneira responsável. Para muitos, falar sobre a IA responsável pode ser mais fácil, mas colocá-la em prática é um desafio. Se você tem interesse em aprender a operacionalizar a IA responsável na sua organização, este curso é para você. Nele, você vai aprender como o Google Cloud faz isso hoje, além de analisar práticas recomendadas e lições aprendidas, a fim de criar uma base para elaborar sua própria abordagem de IA responsável.

Saiba mais

Este é um curso de microaprendizagem introdutório que busca explicar a IA responsável: o que é, qual é a importância dela e como ela é aplicada nos produtos do Google. Ele também contém os 7 princípios de IA do Google.

Saiba mais

Este curso é uma introdução aos Notebooks da Vertex AI, que são ambientes baseados em notebooks do Jupyter. Eles fornecem uma plataforma unificada para todo o fluxo de trabalho de machine learning, desde a preparação de dados até a implantação e monitoramento de modelos. Tópicos do curso: (1) Diferentes tipos de Notebooks da Vertex AI e os recursos deles e (2) Como criar e gerenciar Notebooks da Vertex AI.

Saiba mais

Este curso ajuda a criar um plano de estudo para o exame de certificação Professional Machine Learning Engineer (PMLE). É possível conferir a amplitude e o escopo dos domínios abordados no exame. Os estudantes também podem acompanhar os preparativos para o exame e criar planos de estudo individuais.

Saiba mais

Esta é a segunda parte do curso "Observabilidade no Google Cloud". Esse curso aborda ferramentas de gerenciamento do desempenho de aplicativos, incluindo Error Reporting, Cloud Trace e Cloud Profiler.

Saiba mais

A Business Leader in Generative AI can articulate the capabilities of core cloud Generative AI products and services and understand how they benefit organizations. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey and how they can leverage Google Cloud's generative AI products to overcome these challenges.

Saiba mais

Neste curso, apresentamos os recursos de IA e machine learning (ML) no Google Cloud que criam projetos de IA generativa e preditiva. Vamos conhecer as tecnologias, os produtos e as ferramentas disponíveis em todo o ciclo de vida de dados à IA, o que inclui os fundamentos dessa tecnologia, o desenvolvimento e as soluções dela. O objetivo é ajudar cientistas de dados, desenvolvedores de IA e engenheiros de ML a aprimorar habilidades e o conhecimento com experiências de aprendizado envolventes e exercícios práticos.

Saiba mais

Neste curso intensivo sob demanda, os participantes vão conhecer os serviços abrangentes e flexíveis de infraestrutura e plataforma fornecidos pelo Google Cloud. Com o auxílio de videoaulas, demonstrações e laboratórios práticos, os participantes têm a chance de conhecer e implantar elementos da solução. Isso inclui interconexão segura entre redes, balanceamento de carga, escalonamento automático, automação de infraestrutura e serviços gerenciados.

Saiba mais

Neste curso intensivo sob demanda, os participantes vão conhecer os serviços abrangentes e flexíveis de infraestrutura e plataforma fornecidos pelo Google Cloud, com foco no Compute Engine. Com o auxílio de videoaulas, demonstrações e laboratórios práticos, os participantes têm a chance de conhecer e implantar elementos da solução, incluindo componentes de infraestrutura, como redes, sistemas e serviços de aplicativos. O curso também aborda a implantação de soluções práticas, como chaves de criptografia fornecidas pelo cliente, gerenciamento de segurança e acesso, cotas e faturamento, além do monitoramento de recursos.

Saiba mais

Este é um curso de microaprendizagem introdutório que busca explicar a IA generativa: o que é, como é usada e por que ela é diferente de métodos tradicionais de machine learning. O curso também aborda as ferramentas do Google que ajudam você a desenvolver apps de IA generativa.

Saiba mais

Este curso prepara estudantes para criar soluções altamente confiáveis e eficientes no Google Cloud usando padrões de design comprovados. Ele é uma continuação do curso "Como criar arquiteturas com o Google Compute Engine" ou "Como criar arquiteturas com o Google Kubernetes Engine" e exige experiência prática com as tecnologias abordadas nesses dois cursos. Com uma combinação de apresentações, atividades de design e laboratórios práticos, os participantes aprendem a definir e equilibrar requisitos técnicos e comerciais para projetar implantações do Google Cloud que sejam seguras, econômicas e altamente confiáveis e disponíveis.

Saiba mais

Este curso ajuda a criar um plano de estudos para o exame de certificação Professional Cloud Architect (PCA). É possível conferir a amplitude e o escopo dos domínios abordados no exame. Os estudantes também podem acompanhar os preparativos para o exame e criar planos de estudos individuais.

Saiba mais

Neste curso intensivo sob demanda, os participantes vão conhecer os serviços abrangentes e flexíveis de infraestrutura e plataforma fornecidos pelo Google Cloud, com foco no Compute Engine. Com o auxílio de videoaulas, demonstrações e laboratórios práticos, os participantes têm chance de conhecer e implantar elementos da solução, incluindo componentes de infraestrutura, como redes, máquinas virtuais e serviços de aplicativos. Você vai aprender a usar o Google Cloud no Console e no Cloud Shell. Além disso, vamos detalhar o papel de um arquiteto de nuvem, abordagens de design de infraestruturas, configuração de redes virtuais com a nuvem privada virtual (VPC), projetos, redes, sub-redes, endereços IP, rotas e regras de firewall.

Saiba mais

Bem-vindo ao curso "Introdução ao Google Kubernetes Engine". Se você têm interesse no Kubernetes, uma camada de software que fica entre seus aplicativos e a infraestrutura de hardware, aqui é o lugar certo. O Google Kubernetes Engine transforma o Kubernetes em um serviço gerenciado no Google Cloud. O objetivo deste curso é apresentar os conceitos básicos do Google Kubernetes Engine, ou GKE, como é comumente conhecido, e aprender a conteinerizar e executar aplicativos no Google Cloud. O curso começa com uma introdução básica ao Google Cloud e é seguido pelos conceitos gerais dos contêineres e do Kubernetes, da arquitetura do Kubernetes e das operações do Kubernetes.

Saiba mais

Esta Quest de nível básico é exclusiva entre as outras ofertas do Qwiklabs. Os laboratórios foram criados para oferecer um treinamento prático aos profissionais de TI nos tópicos e serviços da certificação Associate Cloud Engineer do Google Cloud . Abrangendo desde IAM e serviços de rede até a implantação do Kubernetes Engine, esta Quest é composta de laboratórios específicos que colocarão à prova seu conhecimento sobre o GCP. Os laboratórios ajudarão a desenvolver suas habilidades, mas recomendamos que você também consulte o guia do exame e outros materiais preparatórios disponíveis.

Saiba mais

Este curso ajuda estudantes a criar um plano de estudo para o exame de certificação PDE (Professional Data Engineer). É possível conferir a amplitude e o escopo dos domínios abordados no exame. Os estudantes também podem acompanhar os preparativos para o exame e criar planos de estudos individuais.

Saiba mais

Na última parte da série de cursos do Dataflow, vamos abordar os componentes do modelo operacional do Dataflow. Veremos ferramentas e técnicas para solucionar problemas e otimizar o desempenho do pipeline. Depois analisaremos as práticas recomendadas de teste, implantação e confiabilidade para pipelines do Dataflow. Por fim, faremos uma revisão dos modelos, que facilitam o escalonamento dos pipelines do Dataflow para organizações com centenas de usuários. Essas lições garantem que a plataforma de dados seja estável e resiliente a circunstâncias imprevistas.

Saiba mais

Na segunda parte desta série, vamos nos aprofundar no desenvolvimento de pipelines usando o SDK do Beam. Primeiro, vamos conferir um resumo dos conceitos do Apache Beam. Depois disso, falaremos sobre como processar dados de streaming usando janelas, marcas d’água e gatilhos. Em seguida, vamos ver as opções de origens e coletores para seus pipelines, além de esquemas para expressar seus dados estruturados e como fazer transformações com estado usando as APIs State e Timer. A próxima tarefa será conferir as práticas recomendadas para maximizar o desempenho do pipeline. No final do curso, apresentaremos as APIs SQL e Dataframes, que representam sua lógica de negócios no Beam. Além disso, veremos como desenvolver pipelines de maneira iterativa usando os notebooks do Beam.

Saiba mais

O processamento de dados de streaming é cada vez mais usado pelas empresas para gerar métricas sobre as operações comerciais em tempo real. Neste curso, você vai aprender a criar pipelines de dados de streaming no Google Cloud. O Pub/Sub é apresentado como a ferramenta para gerenciar dados de streaming de entrada. No curso, também abordamos a aplicação de agregações e transformações a dados de streaming usando o Dataflow, além de formas de armazenar registros processados no BigQuery ou no Bigtable para análise. Os participantes vão ganhar experiência prática na criação de componentes de pipelines de dados de streaming no Google Cloud usando o Qwiklabs.

Saiba mais

Os pipelines de dados geralmente se encaixam em um desses três paradigmas: extração e carregamento (EL), extração, carregamento e transformação (ELT) ou extração, transformação e carregamento (ETL). Este curso descreve qual paradigma deve ser usado em determinadas situações e quando isso ocorre com dados em lote. Além disso, vamos falar sobre várias tecnologias no Google Cloud para transformação de dados, incluindo o BigQuery, a execução do Spark no Dataproc, gráficos de pipeline no Cloud Data Fusion e processamento de dados sem servidor com o Dataflow. Os participantes vão ganhar experiência prática na criação de componentes de pipelines de dados no Google Cloud usando o Qwiklabs.

Saiba mais

Os dois principais componentes de um pipeline de dados são data lakes e warehouses. Neste curso, destacamos os casos de uso para cada tipo de armazenamento e as soluções de data lake e warehouse disponíveis no Google Cloud de forma detalhada e técnica. Além disso, também descrevemos o papel de um engenheiro de dados, os benefícios de um pipeline de dados funcional para operações comerciais e analisamos por que a engenharia de dados deve ser feita em um ambiente de nuvem. Este é o primeiro curso da série "Engenharia de dados no Google Cloud". Após a conclusão, recomendamos que você comece o curso "Como criar pipelines de dados em lote no Google Cloud".

Saiba mais

Conclua o selo de habilidade intermediário Dados de engenharia para modelagem preditiva com o BigQuery ML para mostrar que você sabe: criar pipelines de transformação de dados no BigQuery usando o Dataprep by Trifacta; usar o Cloud Storage, o Dataflow e o BigQuery para criar fluxos de trabalho de extração, transformação e carregamento de dados (ELT); e criar modelos de machine learning usando o BigQuery ML.

Saiba mais

Conquiste o selo de habilidade Implementar o balanceamento de carga no Compute Engine para demonstrar que você é capaz de: escrever comandos gcloud, usar o Cloud Shell, criar e implantar máquinas virtuais no Compute Engine e configurar balanceadores de carga HTTP e de rede. Um selo de habilidade é um selo digital exclusivo emitido pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Cloud, comprovando sua capacidade de aplicar o conhecimento em um ambiente prático e interativo. Complete esse curso e o laboratório com desafio da avaliação final para receber o selo de habilidade que pode ser compartilhado com seus contatos.

Saiba mais

Este é o primeiro de uma série de três cursos sobre processamento de dados sem servidor com o Dataflow. Nele, vamos relembrar o que é o Apache Beam e qual é a relação entre ele e o Dataflow. Depois, falaremos sobre a visão do Apache Beam e os benefícios do framework de portabilidade desse modelo de programação. Com esse processo, o desenvolvedor pode usar a linguagem de programação favorita com o back-end de execução que quiser. Em seguida, mostraremos como o Dataflow permite a separação entre a computação e o armazenamento para economizar dinheiro. Além disso, você vai aprender como as ferramentas de identidade, acesso e gerenciamento interagem com os pipelines do Dataflow. Por fim, vamos ver como implementar o modelo de segurança ideal para seu caso de uso no Dataflow.

Saiba mais

A incorporação de machine learning em pipelines de dados aumenta a capacidade de extrair insights dessas informações. Neste curso, mostramos as várias formas de incluir essa tecnologia em pipelines de dados do Google Cloud. Para casos de pouca ou nenhuma personalização, vamos falar sobre o AutoML. Para usar recursos de machine learning mais personalizados, vamos apresentar os Notebooks e o machine learning do BigQuery (BigQuery ML). No curso, você também vai aprender sobre a produção de soluções de machine learning usando a Vertex AI.

Saiba mais

Este curso apresenta os produtos e serviços de Big Data e machine learning do Google Cloud que auxiliam no ciclo de vida de dados para IA. Ele explica os processos, os desafios e os benefícios de criar um pipeline de Big Data e modelos de machine learning com a Vertex AI no Google Cloud.

Saiba mais

"Noções básicas do Google Cloud: infraestrutura principal" é uma apresentação da terminologia e de conceitos importantes para trabalhar com o Google Cloud. Usando vídeos e laboratórios práticos, o curso apresenta e compara vários serviços de armazenamento e computação do Google Cloud, além de ferramentas importantes para o gerenciamento de políticas e recursos.

Saiba mais