Partecipa Accedi

Narendra Ghosh

Membro dal giorno 2022

Campionato Oro

32480 punti
Work with Gemini Models in BigQuery Earned lug 30, 2025 EDT
Using BigQuery Machine Learning for Inference Earned lug 30, 2025 EDT
Gemini for Data Scientists and Analysts Earned lug 30, 2025 EDT
Developing Applications with Cloud Run on Google Cloud: Fundamentals Earned lug 22, 2025 EDT
Logging and Monitoring in Google Cloud Earned lug 22, 2025 EDT
Launching into Machine Learning - Italiano Earned apr 21, 2025 EDT
Boost Productivity with Gemini in BigQuery Earned mar 12, 2025 EDT
Introduction to Data Engineering on Google Cloud Earned mar 12, 2025 EDT
Introduction to Generative AI Studio - Italiano Earned feb 17, 2025 EST
Responsible AI: Applying AI Principles with Google Cloud - Italiano Earned feb 17, 2025 EST
Introduction to Responsible AI - Italiano Earned feb 17, 2025 EST
Working with Notebooks in Vertex AI Earned feb 14, 2025 EST
Professional Machine Learning Engineer Study Guide Earned feb 12, 2025 EST
Observability in Google Cloud Earned feb 11, 2025 EST
Generative AI for Business Leaders Earned feb 11, 2025 EST
Introduzione all'AI e al machine learning su Google Cloud Earned set 17, 2024 EDT
Infrastruttura Google Cloud elastica: scalabilità e automazione Earned mag 7, 2024 EDT
Infrastruttura Google Cloud di base: servizi principali Earned mag 2, 2024 EDT
Introduction to Generative AI - Italiano Earned ago 10, 2023 EDT
Infrastruttura Google Cloud affidabile: progetto e processo Earned mar 16, 2023 EDT
Preparing for the Professional Cloud Architect Exam - Italiano Earned mar 3, 2023 EST
Infrastruttura Google Cloud di base: fondamenti Earned mar 1, 2023 EST
Introduzione a Google Kubernetes Engine Earned mar 1, 2023 EST
DEPRECATED Cloud Architecture Earned feb 24, 2023 EST
Preparing for your Professional Data Engineer Journey Earned feb 21, 2023 EST
Serverless Data Processing with Dataflow: Operations Earned feb 8, 2023 EST
Serverless Data Processing with Dataflow: Develop Pipelines Earned feb 7, 2023 EST
Creazione di sistemi di analisi dei flussi di dati resilienti su Google Cloud Earned feb 1, 2023 EST
Creazione di pipeline di dati in batch su Google Cloud Earned gen 31, 2023 EST
Modernizzazione di data lake e data warehouse con Google Cloud Earned gen 27, 2023 EST
Engineer Data for Predictive Modeling with BigQuery ML Earned gen 25, 2023 EST
Implementa il bilanciamento del carico su Compute Engine Earned dic 19, 2022 EST
Serverless Data Processing with Dataflow: Foundations Earned nov 11, 2022 EST
Smart Analytics, Machine Learning, and AI on Google Cloud - Italiano Earned nov 11, 2022 EST
Google Cloud Big Data and Machine Learning Fundamentals - Italiano Earned nov 9, 2022 EST
Google Cloud Fundamentals: Core Infrastructure - Italiano Earned mag 10, 2022 EDT

This course demonstrates how to use AI/ML models for generative AI tasks in BigQuery. Through a practical use case involving customer relationship management, you learn the workflow of solving a business problem with Gemini models. To facilitate comprehension, the course also provides step-by-step guidance through coding solutions using both SQL queries and Python notebooks.

Scopri di più

Learn about BigQuery ML for Inference, why Data Analysts should use it, its use cases, and supported ML models. You will also learn how to create and manage these ML models in BigQuery.

Scopri di più

In this course, you learn how Gemini, a generative AI-powered collaborator from Google Cloud, helps analyze customer data and predict product sales. You also learn how to identify, categorize, and develop new customers using customer data in BigQuery. Using hands-on labs, you experience how Gemini improves data analysis and machine learning workflows. Duet AI was renamed to Gemini, our next-generation model.

Scopri di più

This course introduces the Cloud Run serverless platform for running applications. In this course, you learn about the fundamentals of Cloud Run, its resource model and the container lifecycle. You learn about service identities, how to control access to services, and how to develop and test your application locally before deploying it to Cloud Run. The course also teaches you how to integrate with other services on Google Cloud so you can build full-featured applications.

Scopri di più

This course teaches participants techniques for monitoring and improving infrastructure and application performance in Google Cloud. Using a combination of presentations, demos, hands-on labs, and real-world case studies, attendees gain experience with full-stack monitoring, real-time log management and analysis, debugging code in production, tracing application performance bottlenecks, and profiling CPU and memory usage.

Scopri di più

Il corso inizia con una discussione sui dati: come migliorare la qualità dei dati ed eseguire analisi esplorative dei dati. Descriveremo Vertex AI AutoML e come creare, addestrare ed eseguire il deployment di un modello di ML senza scrivere una sola riga di codice. Comprenderai i vantaggi di Big Query ML. Discuteremo quindi di come ottimizzare un modello di machine learning (ML) e di come la generalizzazione e il campionamento possano aiutare a valutare la qualità dei modelli di ML per l'addestramento personalizzato.

Scopri di più

This course explores Gemini in BigQuery, a suite of AI-driven features to assist data-to-AI workflow. These features include data exploration and preparation, code generation and troubleshooting, and workflow discovery and visualization. Through conceptual explanations, a practical use case, and hands-on labs, the course empowers data practitioners to boost their productivity and expedite the development pipeline.

Scopri di più

In this course, you learn about data engineering on Google Cloud, the roles and responsibilities of data engineers, and how those map to offerings provided by Google Cloud. You also learn about ways to address data engineering challenges.

Scopri di più

Questo corso illustra Generative AI Studio, un prodotto su Vertex AI che ti aiuta a prototipare e personalizzare i modelli di AI generativa in modo da poterne utilizzare le capacità nelle tue applicazioni. In questo corso imparerai cos'è Generative AI Studio, le sue funzionalità e opzioni e come utilizzarlo, esaminando le demo del prodotto. Alla fine, troverai un laboratorio pratico per mettere in pratica ciò che hai imparato e un quiz per testare le tue conoscenze.

Scopri di più

Dal momento che l'uso dell'intelligenza artificiale e del machine learning nelle aziende continua a crescere, cresce anche l'importanza di realizzarli in modo responsabile. Molti sono scoraggiati dal fatto che parlare di IA responsabile può essere più facile che metterla in pratica. Se vuoi imparare come operativizzare l'IA responsabile nella tua organizzazione, questo corso fa per te. In questo corso scoprirai come Google Cloud ci riesce attualmente, oltre alle best practice e alle lezioni apprese, per fungere da framework per costruire il tuo approccio all'IA responsabile.

Scopri di più

Questo è un corso di microlearning di livello introduttivo volto a spiegare cos'è l'IA responsabile, perché è importante e in che modo Google implementa l'IA responsabile nei propri prodotti. Introduce anche i 7 principi dell'IA di Google.

Scopri di più

This course is an introduction to Vertex AI Notebooks, which are Jupyter notebook-based environments that provide a unified platform for the entire machine learning workflow, from data preparation to model deployment and monitoring. The course covers the following topics: (1) The different types of Vertex AI Notebooks and their features and (2) How to create and manage Vertex AI Notebooks.

Scopri di più

This course helps learners create a study plan for the PMLE (Professional Machine Learning Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

Scopri di più

Welcome to the second part of the two part course, Observability in Google Cloud. This course is all about application performance management tools, including Error Reporting, Cloud Trace, and Cloud Profiler.

Scopri di più

A Business Leader in Generative AI can articulate the capabilities of core cloud Generative AI products and services and understand how they benefit organizations. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey and how they can leverage Google Cloud's generative AI products to overcome these challenges.

Scopri di più

Questo corso presenta le offerte di intelligenza artificiale (AI) e machine learning (ML) su Google Cloud per la creazione di progetti di AI predittiva e generativa. Esplora le tecnologie, i prodotti e gli strumenti disponibili durante tutto il ciclo di vita data-to-AI, includendo le basi, lo sviluppo e le soluzioni di AI. Ha lo scopo di aiutare data scientist, sviluppatori di AI e ML engineer a migliorare le proprie abilità e conoscenze attraverso attività di apprendimento coinvolgenti ed esercizi pratici.

Scopri di più

Questo corso accelerato on demand illustra ai partecipanti l'infrastruttura completa e flessibile e i servizi di piattaforma forniti da Google Cloud. Attraverso una combinazione di videolezioni, demo e lab pratici, i partecipanti potranno esplorare gli elementi delle soluzioni, tra cui interconnessione sicura delle reti, bilanciamento del carico, scalabilità automatica, automazione dell'infrastruttura e servizi gestiti.

Scopri di più

Questo corso accelerato on demand illustra ai partecipanti l'infrastruttura e i servizi di piattaforma flessibili e completi di Google Cloud con particolare attenzione a Compute Engine. Attraverso una combinazione di videolezioni, demo e lab pratici, i partecipanti potranno esplorare gli elementi delle soluzioni, tra cui i componenti dell'infrastruttura come reti, sistemi e servizi per applicazioni, ed eseguirne il deployment. Questo corso tratta inoltre del deployment di soluzioni pratiche quali, ad esempio, chiavi di crittografia fornite dal cliente, gestione di sicurezza e accessi, quote e fatturazione, monitoraggio delle risorse.

Scopri di più

Questo è un corso di microlearning di livello introduttivo volto a spiegare cos'è l'AI generativa, come viene utilizzata e in che modo differisce dai tradizionali metodi di machine learning. Descrive inoltre gli strumenti Google che possono aiutarti a sviluppare le tue app Gen AI.

Scopri di più

Questo corso spiega agli studenti come creare soluzioni efficienti e ad alta affidabilità su Google Cloud utilizzando pattern di progettazione comprovati. È la continuazione del corso Progettazione dell'architettura con Google Compute Engine o Progettazione dell'architettura con Google Kubernetes Engine e presuppone che si abbia esperienza pratica con le tecnologie esaminate in uno dei due corsi. Attraverso una combinazione di presentazioni, attività di progettazione e lab pratici, i partecipanti impareranno a definire e bilanciare i requisiti aziendali e tecnici per progettare deployment Google Cloud estremamente affidabili, sicuri, economicamente convenienti e ad alta disponibilità.

Scopri di più

Lo scopo di questo corso è aiutare coloro che sono qualificati ad avere confidenza per tentare l'esame e aiutare le persone non ancora qualificate a sviluppare il proprio piano per la preparazione.

Scopri di più

Questo corso accelerato on demand illustra ai partecipanti l'infrastruttura e i servizi di piattaforma flessibili e completi di Google Cloud con particolare attenzione a Compute Engine. Attraverso una combinazione di videolezioni, demo e lab pratici, i partecipanti potranno esplorare gli elementi delle soluzioni, tra cui i componenti dell'infrastruttura come reti, macchine virtuali e servizi per applicazioni, ed eseguirne il deployment. Imparerai a utilizzare Google Cloud mediante la console e Cloud Shell. Scoprirai inoltre il ruolo del Cloud Architect, gli approcci alla progettazione dell'infrastruttura e la configurazione del networking virtuale con VPC (Virtual Private Cloud), progetti, reti, subnet, indirizzi IP, route e regole firewall.

Scopri di più

Ti diamo il benvenuto nel corso Introduzione a Google Kubernetes Engine. Se ti interessa Kubernetes, un livello software che si trova tra le tue applicazioni e la tua infrastruttura hardware, allora sei nel posto giusto. Google Kubernetes Engine ti offre Kubernetes come servizio gestito su Google Cloud. L'obiettivo di questo corso è illustrare le nozioni di base di Google Kubernetes Engine, o GKE, come viene comunemente chiamato, e come containerizzare le applicazioni e farle funzionare su Google Cloud. Il corso inizia con un'introduzione di base a Google Cloud, seguita da una panoramica dei container e di Kubernetes, dell'architettura di Kubernetes e delle operazioni di Kubernetes.

Scopri di più

This fundamental-level quest is unique amongst the other quest offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Cloud Architect Certification. From IAM, to networking, to Kubernetes engine deployment, this quest is composed of specific labs that will put your Google Cloud knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, we recommend that you also review the exam guide and other available preparation resources.

Scopri di più

This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

Scopri di più

In the last installment of the Dataflow course series, we will introduce the components of the Dataflow operational model. We will examine tools and techniques for troubleshooting and optimizing pipeline performance. We will then review testing, deployment, and reliability best practices for Dataflow pipelines. We will conclude with a review of Templates, which makes it easy to scale Dataflow pipelines to organizations with hundreds of users. These lessons will help ensure that your data platform is stable and resilient to unanticipated circumstances.

Scopri di più

In this second installment of the Dataflow course series, we are going to be diving deeper on developing pipelines using the Beam SDK. We start with a review of Apache Beam concepts. Next, we discuss processing streaming data using windows, watermarks and triggers. We then cover options for sources and sinks in your pipelines, schemas to express your structured data, and how to do stateful transformations using State and Timer APIs. We move onto reviewing best practices that help maximize your pipeline performance. Towards the end of the course, we introduce SQL and Dataframes to represent your business logic in Beam and how to iteratively develop pipelines using Beam notebooks.

Scopri di più

L'elaborazione dei flussi di dati sta diventando sempre più diffusa poiché la modalità flusso consente alle aziende di ottenere parametri in tempo reale sulle operazioni aziendali. Questo corso tratta la creazione di pipeline di dati in modalità flusso su Google Cloud. Pub/Sub viene presentato come strumento per la gestione dei flussi di dati in entrata. Il corso spiega anche come applicare aggregazioni e trasformazioni ai flussi di dati utilizzando Dataflow e come archiviare i record elaborati in BigQuery o Bigtable per l'analisi. Gli studenti acquisiranno esperienza pratica nella creazione di componenti della pipeline di dati in modalità flusso su Google Cloud utilizzando QwikLabs.

Scopri di più

Le pipeline di dati in genere rientrano in uno dei paradigmi EL (Extract, Load), ELT (Extract, Load, Transform) o ETL (Extract, Transform, Load). Questo corso descrive quale paradigma dovrebbe essere utilizzato e quando per i dati in batch. Inoltre, questo corso tratta diverse tecnologie su Google Cloud per la trasformazione dei dati, tra cui BigQuery, l'esecuzione di Spark su Dataproc, i grafici della pipeline in Cloud Data Fusion e trattamento dati serverless con Dataflow. Gli studenti fanno esperienza pratica nella creazione di componenti della pipeline di dati su Google Cloud utilizzando Qwiklabs.

Scopri di più

I due componenti chiave di qualsiasi pipeline di dati sono costituiti dai data lake e dai data warehouse. In questo corso evidenzieremo i casi d'uso per ogni tipo di spazio di archiviazione e approfondiremo i dettagli tecnici delle soluzioni di data lake e data warehouse disponibili su Google Cloud. Inoltre, descriveremo il ruolo di un data engineer, illustreremo i vantaggi di una pipeline di dati di successo per le operazioni aziendali ed esamineremo i motivi per cui il data engineering dovrebbe essere eseguito in un ambiente cloud. Questo è il primo corso della serie Data engineering su Google Cloud. Dopo il completamento di questo corso, iscriviti al corso Creazione di pipeline di dati in batch su Google Cloud.

Scopri di più

Complete the intermediate Engineer Data for Predictive Modeling with BigQuery ML skill badge to demonstrate skills in the following: building data transformation pipelines to BigQuery using Dataprep by Trifacta; using Cloud Storage, Dataflow, and BigQuery to build extract, transform, and load (ETL) workflows; and building machine learning models using BigQuery ML.

Scopri di più

Ottieni il badge delle competenze introduttivo Implementa il bilanciamento del carico su Compute Engine per dimostrare le tue competenze nei seguenti ambiti: scrivere comandi gcloud e utilizzare Cloud Shell, creare ed eseguire il deployment di macchine virtuali in Compute Engine e configurare bilanciatori del carico di rete e HTTP. Un badge delle competenze è un badge digitale esclusivo, assegnato da Google Cloud come riconoscimento della tua competenza nell'uso dei prodotti e servizi Google Cloud dopo aver messo alla prova la tua cacpacità di applicare le tue conoscenze in un ambiente interattivo pratico. Completa questo corso e il Challenge Lab conclusivo per ricevere un badge delle competenze da condividere con la tua rete.

Scopri di più

This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.

Scopri di più

L'integrazione del machine learning nelle pipeline di dati aumenta la capacità di estrarre insight dai dati. Questo corso illustra i modi in cui il machine learning può essere incluso nelle pipeline di dati su Google Cloud. Per una personalizzazione minima o nulla, il corso tratta di AutoML. Per funzionalità di machine learning più personalizzate, il corso introduce Notebooks e BigQuery Machine Learning (BigQuery ML). Inoltre, il corso spiega come mettere in produzione soluzioni di machine learning utilizzando Vertex AI.

Scopri di più

Questo corso presenta i prodotti e i servizi per big data e di machine learning di Google Cloud che supportano il ciclo di vita dai dati all'IA. Esplora i processi, le sfide e i vantaggi della creazione di una pipeline di big data e di modelli di machine learning con Vertex AI su Google Cloud.

Scopri di più

Google Cloud Fundamentals: Core Infrastructure introduce concetti e terminologia importanti per lavorare con Google Cloud. Attraverso video e lab pratici, questo corso presenta e confronta molti dei servizi di computing e archiviazione di Google Cloud, insieme a importanti strumenti di gestione delle risorse e dei criteri.

Scopri di più