Oleksandr Maistrenko
Miembro desde 2022
Liga de Plata
5490 puntos
Miembro desde 2022
El curso comienza con un debate sobre los datos: cómo mejorar su calidad y cómo realizar análisis exploratorios de ellos. Describimos Vertex AI AutoML y cómo crear, entrenar e implementar un modelo de AA sin escribir una sola línea de código. Conocerás los beneficios de BigQuery ML. Luego, se analiza cómo optimizar un modelo de aprendizaje automático (AA) y cómo la generalización y el muestreo pueden ayudar a evaluar la calidad de los modelos de AA para el entrenamiento personalizado.
En este curso, se presentan las ofertas de aprendizaje automático (AA) en Google Cloud que compilan proyectos de IA predictiva y generativa. También se exploran las tecnologías, los productos y las herramientas disponibles durante el ciclo de vida desde los datos hasta la IA, que engloban los fundamentos, el desarrollo y las soluciones de IA. El objetivo es ayudar a científicos de datos, ingenieros de AA y desarrolladores de IA a mejorar sus habilidades y conocimientos a través de experiencias de aprendizaje atractivas y ejercicios prácticos.
En el curso, “Diseño de arquitecturas con Google Kubernetes Engine: conceptos básicos”, obtendrá información sobre el diseño y los principios de Google Cloud, además de una introducción a la creación y administración de contenedores de software y a la arquitectura de Kubernetes.
En este curso acelerado a pedido, se presentan los servicios flexibles y completos de infraestructura y plataforma que proporciona Google Cloud. A través de una combinación de clases por video, demostraciones y labs prácticos, los participantes exploran y, también, implementan elementos de las soluciones, como la interconexión segura de redes, el balanceo de cargas, el ajuste de escala automático, la automatización de la infraestructura y los servicios administrados.
En este curso acelerado a pedido, se presentan los servicios flexibles y completos de infraestructura y plataforma que proporciona Google Cloud, con un enfoque en Compute Engine. Mediante una serie de clases por video, demostraciones y labs prácticos, los participantes pueden explorar y, también, implementar elementos de soluciones, incluidos componentes de infraestructura, como redes, sistemas y servicios de aplicaciones. En este curso, también se aborda la implementación de soluciones prácticas, incluidas las claves de encriptación proporcionadas por el cliente, la administración de seguridad y accesos, las cuotas y la facturación, y la supervisión de recursos.
En este curso acelerado on demand, se presentan los servicios flexibles y completos de infraestructura y plataforma que proporciona Google Cloud, con un enfoque en Compute Engine. Mediante una serie de clases por video, demostraciones y labs prácticos, los participantes pueden explorar y, también, implementar elementos de soluciones, incluidos componentes de infraestructura, como redes, máquinas virtuales y servicios de aplicaciones. Aprenderás a usar Google Cloud mediante la consola y Cloud Shell. También te familiarizarás con la función de un arquitecto de nube, enfoques para el diseño de la infraestructura y la configuración de redes virtuales con una nube privada virtual (VPC), proyectos, redes, subredes, direcciones IP, rutas y reglas de firewall.
Aspectos básicos de Google Cloud: Infraestructura principal presenta conceptos y terminología importantes para trabajar con Google Cloud. Mediante videos y labs prácticos, en este curso se presentan y comparan muchos de los servicios de procesamiento y almacenamiento de Google Cloud, junto con importantes recursos y herramientas de administración de políticas.