Wiktor Kuranowski
Member since 2024
Silver League
19995 points
Member since 2024
As the use of enterprise Artificial Intelligence and Machine Learning continues to grow, so too does the importance of building it responsibly. A challenge for many is that talking about responsible AI can be easier than putting it into practice. If you’re interested in learning how to operationalize responsible AI in your organization, this course is for you. In this course, you will learn how Google Cloud does this today, together with best practices and lessons learned, to serve as a framework for you to build your own responsible AI approach.
זהו קורס מבוא ממוקד שמטרתו להסביר מהי אתיקה של בינה מלאכותית, למה היא חשובה ואיך Google נוהגת לפי כללי האתיקה של הבינה המלאכותית במוצרים שלה. מוצגים בו גם 7 עקרונות ה-AI של Google.
זהו קורס מבוא ממוקד שבוחן מהם מודלים גדולים של שפה (LLM), איך משתמשים בהם בתרחישים שונים לדוגמה ואיך אפשר לשפר את הביצועים שלהם באמצעות כוונון של הנחיות. הוא גם כולל הסבר על הכלים של Google שיעזרו לכם לפתח אפליקציות בינה מלאכותית גנרטיבית משלכם.
זהו קורס מבוא ממוקד שמטרתו להסביר מהי בינה מלאכותית גנרטיבית, איך משתמשים בה ובמה היא שונה משיטות מסורתיות של למידת מכונה. הוא גם כולל הסבר על הכלים של Google שיעזרו לכם לפתח אפליקציות בינה מלאכותית גנרטיבית משלכם.
Gemini for Google Workspace provides customers with generative AI features in Google Workspace. In this mini-course, you learn about the key features of Gemini and how they can be used to improve productivity and efficiency in Google Sheets.
This course is designed for data analysts who want to learn about using BigQuery for their data analysis needs. Through a combination of videos, labs, and demos, we cover various topics that discuss how to ingest, transform, and query your data in BigQuery to derive insights that can help in business decision making.
In this course, you learn how Gemini, a generative AI-powered collaborator from Google Cloud, helps analyze customer data and predict product sales. You also learn how to identify, categorize, and develop new customers using customer data in BigQuery. Using hands-on labs, you experience how Gemini improves data analysis and machine learning workflows. Duet AI was renamed to Gemini, our next-generation model.
This course introduces the AI and machine learning (ML) offerings on Google Cloud that build both predictive and generative AI projects. It explores the technologies, products, and tools available throughout the data-to-AI life cycle, encompassing AI foundations, development, and solutions. It aims to help data scientists, AI developers, and ML engineers enhance their skills and knowledge through engaging learning experiences and practical hands-on exercises.
המשמעות של העלויות ב-Google Cloud תיאור: המשימה הזו מתאימה במיוחד לבעלי תפקידים בתחומי הטכנולוגיה או הפיננסים, שאחראים לניהול של העלויות ב-Google Cloud. תלמדו איך להגדיר חשבון חיוב, איך לארגן משאבים ואיך לנהל הרשאות גישה לחיוב. בשיעורים המעשיים האלה תלמדו איך להציג את החשבונית, לעקוב אחר העלויות ב-Google Cloud בעזרת דוחות חיוב, לנתח את נתוני החיוב באמצעות BigQuery או Google Sheets וליצור מרכזי בקרה לחיוב בהתאמה אישית באמצעות Data Studio. מטרות: לתכנן ניהול יעיל של העלויות בענן על ידי הגדרת הצוותים והכלים והחלת שיטות מומלצות לפיקוח פיננסי. להגדיר חשבונות חיוב של Google Cloud ולארגן את המשאבים לניהול עלויות. להיעזר בדוחות החיוב כדי לגלות מהן המגמות הנוכחיות של העלויות ואת העלויות החזויות. לייצא את נתוני החיוב אל Google Sheets או BigQuery ולבדוק אותם. להציג את נתוני החיוב באופן חזותי באמצעות דוחות חיוב ולבנות מרכזי בקרה מותאמים אישית באמצעות Data Studio. קהל: כל מי שמנהל את ההוצאות ב-Google Cloud בכל תפקיד בחברה. התפקידים שנכללים: פיננסים ו-IT, מנהלי רכש, מנהלי כספים, סמנכ"ל תפעול, מנהלי …
This specialized course provides data practitioners with a practical introduction to developing end-to-end forecasting solutions on Google Cloud. Learners work through hands-on labs that cover time series data ingestion into managed datasets, building AutoML forecasting models in Vertex AI, and adding forecasting workflow automation with Vertex AI Pipelines.
In this course, we see what the common challenges faced by data analysts are and how to solve them with the big data tools on Google Cloud. You’ll pick up some SQL along the way and become very familiar with using BigQuery and Dataprep to analyze and transform your datasets. This is the first course of the From Data to Insights with Google Cloud series. After completing this course, enroll in the Creating New BigQuery Datasets and Visualizing Insights course.
This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.
Complete the intermediate Create ML Models with BigQuery ML skill badge to demonstrate skills in creating and evaluating machine learning models with BigQuery ML to make data predictions.
Google Cloud Fundamentals: Core Infrastructure introduces important concepts and terminology for working with Google Cloud. Through videos and hands-on labs, this course presents and compares many of Google Cloud's computing and storage services, along with important resource and policy management tools.