Mohana Selvakumar
成为会员时间:2022
青铜联赛
17136 积分
成为会员时间:2022
在本新手级课程中,您将了解 Google Cloud 数据分析工作流,以及可用于探索、分析和直观呈现数据并与相关人员共享发现结果的工具。结合案例研究、实操实验、讲座和测验/演示,本课程展示了如何将原始数据集转化为纯净数据,进而转化为实用的可视化图表和信息中心。无论您是已经在从事数据工作并想了解如何通过 Google Cloud 取得成功,还是在寻求职业发展,都可以借助本课程迈出第一步。几乎所有在工作中执行或使用数据分析的人都可以从本课程中受益。
Welcome to "Virtual Agent Development in Dialogflow ES for Citizen Devs", the second course in the "Customer Experiences with Contact Center AI" series. In this course, learn how to develop customer conversational solutions using Contact Center Artificial Intelligence (CCAI). You will use Dialogflow ES to create virtual agents and test them using the Dialogflow ES simulator. This course also provides best practices on developing virtual agents. You will also be introduced to adding voice (telephony) as a communication channel to your virtual agent conversations. Through a combination of presentations, demos, and hands-on labs, participants learn how to create virtual agents. This is an intermediate course, intended for learners with the following types of roles: Conversational designers: Designs the user experience of a virtual assistant. Translates the brand's business requirements into natural dialog flows. Citizen developers: Creates new business applications fo…
Welcome to "CCAI Conversational Design Fundamentals", the first course in the "Customer Experiences with Contact Center AI" series. In this course, learn how to design customer conversational solutions using Contact Center Artificial Intelligence (CCAI). You will be introduced to CCAI and its three pillars (Dialogflow, Agent Assist, and Insights), and the concepts behind conversational experiences and how the study of them influences the design of your virtual agent. After taking this course you will be prepared to take your virtual agent design to the next level of intelligent conversation.
A Business Leader in Generative AI can articulate the capabilities of core cloud Generative AI products and services and understand how they benefit organizations. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey and how they can leverage Google Cloud's generative AI products to overcome these challenges.
随着企业对人工智能和机器学习的应用越来越广泛,以负责任的方式构建这些技术也变得更加重要。但对很多企业而言,真正践行 Responsible AI 并非易事。如果您有意了解如何在组织内践行 Responsible AI,本课程正适合您。 本课程将介绍 Google Cloud 目前如何践行 Responsible AI,以及从中总结的最佳实践和经验教训,便于您以此为框架构建自己的 Responsible AI 方法。
Welcome to "CCAI Operations and Implementation", the fourth course in the "Customer Experiences with Contact Center AI" series. In this course, learn some best practices for integrating conversational solutions with your existing contact center software, establishing a framework for human agent assistance, and implementing solutions securely and at scale. In this course, you'll be introduced to Agent Assist and the technology it uses so you can delight your customers with the efficiencies and accuracy of services provided when customers require human agents, connectivity protocols, APIs, and platforms which you can use to create an integration between your virtual agent and the services already established for your business, Dialogflow's Environment Management tool for deployment of different versions of your virtual agent for various purposes, compliance measures and regulations you should be aware of when bringing your virtual agent to production, and you'll be given tips from virtua…
Welcome to "Virtual Agent Development in Dialogflow CX for Software Devs", the third course in the "Customer Experiences with Contact Center AI" series. In this course, learn how to develop more customized customer conversational solutions using Contact Center Artificial Intelligence (CCAI). In this course, you'll be introduced to more advanced and customized handling for virtual agent conversations that need to look up and convey dynamic data, and methods available to you for testing your virtual agent and logs which can be useful for understanding issues that arise. This is an intermediate course, intended for learners with the following type of role: Software developers: Codes computer software in a programming language (e.g., C++, Python, Javascript) and often using an SDK/API.
Welcome to "Virtual Agent Development in Dialogflow CX for Citizen Devs", the second course in the "Customer Experiences with Contact Center AI" series. In this course, learn how to develop customer conversational solutions using Contact Center Artificial Intelligence (CCAI). In this course, you'll be introduced to adding voice (telephony) as a communication channel to your virtual agent conversations using Dialogflow CX.
本课程向您介绍 Transformer 架构和 Bidirectional Encoder Representations from Transformers (BERT) 模型。您将了解 Transformer 架构的主要组成部分,例如自注意力机制,以及该架构如何用于构建 BERT 模型。您还将了解可以使用 BERT 的不同任务,例如文本分类、问答和自然语言推理。完成本课程估计需要大约 45 分钟。
Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.
这是一节入门级微课程,旨在解释什么是负责任的 AI、它的重要性,以及 Google 如何在自己的产品中实现负责任的 AI。此外,本课程还介绍了 Google 的 7 个 AI 开发原则。
这是一节入门级微学习课程,探讨什么是大型语言模型 (LLM)、适合的应用场景以及如何使用提示调整来提升 LLM 性能,还介绍了可以帮助您开发自己的 Gen AI 应用的各种 Google 工具。
这是一节入门级微课程,旨在解释什么是生成式 AI、它的用途以及与传统机器学习方法的区别。该课程还介绍了可以帮助您开发自己的生成式 AI 应用的各种 Google 工具。
本课程简要介绍了编码器-解码器架构,这是一种功能强大且常见的机器学习架构,适用于机器翻译、文本摘要和问答等 sequence-to-sequence 任务。您将了解编码器-解码器架构的主要组成部分,以及如何训练和部署这些模型。在相应的实验演示中,您将在 TensorFlow 中从头编写简单的编码器-解码器架构实现代码,以用于诗歌生成。
本课程将向您介绍注意力机制,这是一种强大的技术,可令神经网络专注于输入序列的特定部分。您将了解注意力的工作原理,以及如何使用它来提高各种机器学习任务的性能,包括机器翻译、文本摘要和问题解答。
本课程向您介绍扩散模型。这类机器学习模型最近在图像生成领域展现出了巨大潜力。扩散模型的灵感来源于物理学,特别是热力学。过去几年内,扩散模型成为热门研究主题并在整个行业开始流行。Google Cloud 上许多先进的图像生成模型和工具都是以扩散模型为基础构建的。本课程向您介绍扩散模型背后的理论,以及如何在 Vertex AI 上训练和部署此类模型。
In this course, you will receive technical training for Enterprise Data Warehouses solutions using BigQuery based on the best practices developed internally by Google’s technical sales and services organizations. The course will also provide guidance and training on key technical challenges that can arise when migrating existing Enterprise Data Warehouses and ETL pipelines to Google Cloud. You will get hands-on experience with real migration tasks, such as data migration, schema optimization, and SQL Query conversion and optimization. The course will also cover key aspects of ETL pipeline migration to Dataproc as well as using Pub/Sub, Dataflow, and Cloud Data Fusion, giving you hands-on experience using all of these tools for Data Warehouse ETL pipelines.
This course continues to explore the implementation of data load and transformation pipelines for a BigQuery Data Warehouse using Dataflow.
This skill badge aims to evaluate a partner's ability to utilize BigQuery's features and capabilities to manage and analyze large datasets. Learners will gain hands-on experience through labs and achieve solid understanding of BigQuery's foundational concepts and features.
This skill badge aims to provide partners an introduction to BigQuery Data Transfer Service and Migration Service, two powerful tools for managing and migrating data in the cloud. Learners will learn how to leverage these tools to efficiently migrate and manage data, and gain hands-on experience through labs.
This workload aims to upskill Google Cloud partners to perform specific tasks associated with priority workloads. Learners will perform the tasks of Migration from Teradata to BigQuery using the Data Transfer Service and the Teradata TPT Export Utility. Sample Data will be used during both methods. Learners will complete a challenge lab that focuses on the process of transferring both schema, data and SQL from a Teradata data warehouse to BigQuery.
In this course, you explore the four components that make up the BigQuery Migration Service. They are Migration Assessment, SQL Translation, Data Transfer Service, and Data Validation. You will use each of these tools to perform a migration using to BigQuery.
完成中级技能徽章课程使用 BigQuery 构建数据仓库,展示以下技能: 联接数据以创建新表、排查联接故障、使用并集附加数据、创建日期分区表, 以及在 BigQuery 中使用 JSON、数组和结构体。 技能徽章是 Google Cloud 颁发的专属数字徽章, 旨在认可您在 Google Cloud 产品与服务方面的熟练度; 您需要在交互式实操环境中参加考核,证明自己运用所学知识的能力后 才能获得。完成此技能徽章课程和作为最终评估的实验室挑战赛, 获得数字徽章,在您的人际圈中炫出自己的技能。
完成中级技能徽章课程利用 BigQuery ML 构建预测模型时的数据工程处理, 展示自己在以下方面的技能:利用 Dataprep by Trifacta 构建 BigQuery 数据转换流水线; 利用 Cloud Storage、Dataflow 和 BigQuery 构建提取、转换和加载 (ETL) 工作流; 以及利用 BigQuery ML 构建机器学习模型。
Incorporating machine learning into data pipelines increases the ability to extract insights from data. This course covers ways machine learning can be included in data pipelines on Google Cloud. For little to no customization, this course covers AutoML. For more tailored machine learning capabilities, this course introduces Notebooks and BigQuery machine learning (BigQuery ML). Also, this course covers how to productionalize machine learning solutions by using Vertex AI.
In this course you will get hands-on in order to work through real-world challenges faced when building streaming data pipelines. The primary focus is on managing continuous, unbounded data with Google Cloud products.
This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.
In this intermediate course, you will learn to design, build, and optimize robust batch data pipelines on Google Cloud. Moving beyond fundamental data handling, you will explore large-scale data transformations and efficient workflow orchestration, essential for timely business intelligence and critical reporting. Get hands-on practice using Dataflow for Apache Beam and Serverless for Apache Spark (Dataproc Serverless) for implementation, and tackle crucial considerations for data quality, monitoring, and alerting to ensure pipeline reliability and operational excellence. A basic knowledge of data warehousing, ETL/ELT, SQL, Python, and Google Cloud concepts is recommended.
While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.
This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.
完成开发 Google Cloud 网络课程,赢取技能徽章。在此课程中,您将学习 部署和监控应用的多种方法,包括执行以下任务的方法:探索 IAM 角色并添加/移除 项目访问权限、创建 VPC 网络、部署和监控 Compute Engine 虚拟机、 编写 SQL 查询、在 Compute Engine 中部署和监控虚拟机,以及使用 Kubernetes 通过多种部署方法部署应用。
完成入门级在 Compute Engine 上实现负载均衡技能徽章课程,展示自己在以下方面的技能: 编写 gcloud 命令和使用 Cloud Shell,在 Compute Engine 中创建和部署虚拟机, 以及配置网络和 HTTP 负载均衡器。 技能徽章是由 Google Cloud 颁发的专属数字徽章, 旨在认可您在 Google Cloud 产品与服务方面的熟练度; 该课程会检验您在交互式实操环境中运用所学知识的 能力。完成此技能徽章课程和作为最终评估的实验室挑战赛, 即可获得技能徽章,并在您的圈子中秀一秀。
This course provides an introduction to using Terraform for Google Cloud. It enables learners to describe how Terraform can be used to implement infrastructure as code and to apply some of its key features and functionalities to create and manage Google Cloud infrastructure. Learners will get hands-on practice building and managing Google Cloud resources using Terraform.
完成“在 Google Cloud 上设置应用开发环境”课程,赢取技能徽章;通过该课程,您将了解如何使用以下技术的基本功能来构建和连接以存储为中心的云基础设施: Cloud Storage、Identity and Access Management、Cloud Functions 和 Pub/Sub。
This course teaches participants techniques for monitoring and improving infrastructure and application performance in Google Cloud. Using a combination of presentations, demos, hands-on labs, and real-world case studies, attendees gain experience with full-stack monitoring, real-time log management and analysis, debugging code in production, tracing application performance bottlenecks, and profiling CPU and memory usage.
这是一套自助式速成课程,向学员介绍 Google Cloud 提供的灵活全面的基础架构和平台服务。学员将通过一系列视频讲座、演示和实操实验,探索和部署各种解决方案元素,包括安全互连网络、负载均衡、自动扩缩、基础架构自动化和代管式服务。
“Google Cloud 基础知识:核心基础设施”介绍在使用 Google Cloud 时会遇到的重要概念和术语。本课程通过视频和实操实验来介绍并比较 Google Cloud 的多种计算和存储服务,并提供重要的资源和政策管理工具。
欢迎学习“Google Kubernetes Engine 使用入门”课程。Kubernetes 是位于应用和硬件基础架构之间的软件层,如果您对 Kubernetes 感兴趣,那就来对地方了!Google Kubernetes Engine 将 Kubernetes 作为 Google Cloud 上的代管式服务提供给您使用。 本课程的目标是介绍 Google Kubernetes Engine(通常称为 GKE)的基础知识,以及将应用容器化并在 Google Cloud 中运行的方法。本课程首先介绍 Google Cloud 的基础知识,然后概述容器、Kubernetes、Kubernetes 架构以及 Kubernetes 操作。
这门自助式速成课程向学员介绍 Google Cloud 提供的灵活全面的基础架构和平台服务,着重介绍了 Compute Engine。学员将通过一系列视频讲座、演示和动手实验,探索和部署各种解决方案元素,包括网络、系统和应用服务等基础架构组件。本课程的内容还包括如何部署实用的解决方案,包括客户提供的加密密钥、安全和访问权限管理、配额和结算,以及资源监控。
这门自助式速成课程向学员介绍 Google Cloud 提供的灵活全面的基础架构和平台服务,其中着重介绍了 Compute Engine。学员将通过一系列视频讲座、演示和动手实验,探索和部署各种解决方案元素,包括网络、虚拟机和应用服务等基础架构组件。您将学习如何通过控制台和 Cloud Shell 使用 Google Cloud。您还将了解云架构师角色、基础架构设计方法以及虚拟网络配置和虚拟私有云 (VPC)、项目、网络、子网、IP 地址、路由及防火墙规则。
This course helps you structure your preparation for the Associate Cloud Engineer exam. You will learn about the Google Cloud domains covered by the exam and how to create a study plan to improve your domain knowledge.