参加 ログイン

chandra sachin

メンバー加入日: 2020

シルバーリーグ

6875 ポイント
Build and Deploy a Generative AI solution using a RAG framework Earned 11月 29, 2024 EST
Professional Data Engineer の取得に向けた準備 Earned 7月 29, 2024 EDT
Text Prompt Engineering Techniques Earned 6月 1, 2024 EDT
Generative AI for Business Leaders Earned 5月 29, 2024 EDT
Text Prompt Engineering Techniques Earned 7月 1, 2023 EDT
Implementing Generative AI with Vertex AI Earned 6月 29, 2023 EDT
責任ある AI: Google Cloud における AI に関する原則の適用 Earned 6月 23, 2023 EDT
Generative AI Explorer - Vertex AI Earned 6月 13, 2023 EDT
Vertex AI Studio の概要 Earned 6月 13, 2023 EDT
Generative AI Fundamentals - 日本語版 Earned 6月 11, 2023 EDT
Encoder-Decoder アーキテクチャ Earned 6月 11, 2023 EDT
大規模言語モデルの概要 Earned 6月 10, 2023 EDT
画像キャプション モデルの作成 Earned 6月 10, 2023 EDT
Transformer モデルと BERT モデル Earned 6月 10, 2023 EDT
アテンション機構 Earned 6月 8, 2023 EDT
画像生成の概要 Earned 6月 6, 2023 EDT
責任ある AI の概要 Earned 6月 6, 2023 EDT
生成 AI の概要 Earned 6月 5, 2023 EDT
Google Kubernetes Engine を使用した構築: ワークロード Earned 9月 27, 2020 EDT
Google Kubernetes Engine を使用した構築: 基礎 Earned 9月 26, 2020 EDT
信頼性に優れた Google Cloud インフラストラクチャ: 設計とプロセス Earned 9月 20, 2020 EDT
Google Kubernetes Engine を使用した構築: 実践 Earned 9月 19, 2020 EDT
Elastic Cloud Infrastructure: Scaling and Automation Earned 9月 12, 2020 EDT
Elastic Cloud Infrastructure: Scaling and Automation 日本語版 Earned 9月 5, 2020 EDT
重要な Google Cloud インフラストラクチャ: コアサービス Earned 8月 29, 2020 EDT
重要な Google Cloud インフラストラクチャ: 基礎 Earned 8月 15, 2020 EDT
Google Cloud Platform Fundamentals: Core Infrastructure Earned 8月 15, 2020 EDT

Demonstrate your ability to implement updated prompt engineering techniques and utilize several of Gemini's key capacilities including multimodal understanding and function calling. Then integrate generative AI into a RAG application deployed to Cloud Run. This course contains labs that are to be used as a test environment. They are deployed to test your understanding as a learner with a limited scope. These technologies can be used with fewer limitations in a real world environment.

詳細

このコースでは、Professional Data Engineer(PDE)認定資格試験に向けた学習計画を作成できます。学習者は、試験の範囲を把握できます。また、試験への準備状況を把握して、個々の学習計画を作成します。

詳細

Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.

詳細

A Business Leader in Generative AI can articulate the capabilities of core cloud Generative AI products and services and understand how they benefit organizations. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey and how they can leverage Google Cloud's generative AI products to overcome these challenges.

詳細

Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.

詳細

This course will help ML Engineers, Developers, and Data Scientists implement Large Language Models for Generative AI use cases with Vertex AI. The first two modules of this course contain links to videos and prerequisite course materials that will build your knowledge foundation in Generative AI. Please do not skip these modules. The advanced modules in this course assume you have completed these earlier modules.

詳細

企業における AI と ML の利用が拡大し続けるなか、責任を持ってそれを構築することの重要性も増しています。多くの企業にとっての課題は、責任ある AI と口で言うのは簡単でも、それを実践するのは難しいということです。このコースは、責任ある AI を組織で運用化する方法を学びたい方に最適です。 このコースでは、Google Cloud が責任ある AI を現在どのように運用化しているかを、ベスト プラクティスや教訓と併せて学び、責任ある AI に対する独自のアプローチを構築するためのフレームワークとして活用できるようにします。

詳細

「Generative AI Explorer - Vertex AI」コースには、 Google Cloud での生成 AI の使用方法に関する複数のラボが含まれます。ラボでは、Vertex AI PaLM API ファミリーの text-bison、chat-bison、 textembedding-gecko などのモデルの使用方法を確認し、プロンプト設計やベスト プラクティス、さらに Vertex AI を活用した アイディエーション、テキスト分類、テキスト抽出、テキスト要約について 学びます。また、 Vertex AI カスタム トレーニングによって基盤モデルをチューニングし、Vertex AI エンドポイントにデプロイする方法も学びます。

詳細

このコースでは、生成 AI モデルとのやりとり、ビジネス アイデアのプロトタイプ作成、本番環境へのリリースを行うツールである Vertex AI Studio をご紹介します。現実感のあるユースケースや、興味深い講義、ハンズオンラボを通して、プロンプトの作成から成果の実現に至るまでのライフサイクルを詳細に学び、Gemini マルチモーダル アプリケーションの開発、プロンプトの設計、モデルのチューニングに Vertex AI を活用する方法を学習します。Vertex AI Studio を利用することで、生成 AI をプロジェクトに最大限に活かせるようになることを目指します。

詳細

「Introduction to Generative AI」、「Introduction to Large Language Models」、「Introduction to Responsible AI」の各コースを修了すると、スキルバッジを獲得できます。最終テストに合格することで、ジェネレーティブ AI の基礎概念を理解していることが証明されます。 スキルバッジは、Google Cloud のプロダクトとサービスに関する知識を認定するために Google Cloud が発行するデジタルバッジです。スキルバッジは、ソーシャル メディアの公開プロフィールを作成してそこに追加することで一般向けに共有できます。

詳細

このコースでは、機械翻訳、テキスト要約、質問応答などのシーケンス ツー シーケンス タスクに対応する、強力かつ広く使用されている ML アーキテクチャである Encoder-Decoder アーキテクチャの概要を説明します。Encoder-Decoder アーキテクチャの主要なコンポーネントと、これらのモデルをトレーニングして提供する方法について学習します。対応するラボのチュートリアルでは、詩を生成するための Encoder-Decoder アーキテクチャの簡単な実装を、TensorFlow で最初からコーディングします。

詳細

このコースは、大規模言語モデル(LLM)とは何か、どのようなユースケースで活用できるのか、プロンプトのチューニングで LLM のパフォーマンスを高めるにはどうすればよいかについて学習する、入門レベルのマイクロ ラーニング コースです。独自の生成 AI アプリを開発する際に利用できる Google ツールも紹介します。

詳細

このコースでは、ディープ ラーニングを使用して画像キャプション生成モデルを作成する方法について学習します。エンコーダやデコーダなどの画像キャプション生成モデルのさまざまなコンポーネントと、モデルをトレーニングして評価する方法を学びます。このコースを修了すると、独自の画像キャプション生成モデルを作成し、それを使用して画像のキャプションを生成できるようになります。

詳細

このコースでは、Transformer アーキテクチャと Bidirectional Encoder Representations from Transformers(BERT)モデルの概要について説明します。セルフアテンション機構をはじめとする Transformer アーキテクチャの主要コンポーネントと、それが BERT モデルの構築にどのように使用されているのかについて学習します。さらに、テキスト分類、質問応答、自然言語推論など、BERT を適用可能なその他のタスクについても学習します。このコースの推定所要時間は約 45 分です。

詳細

このコースでは、アテンション機構について学習します。アテンション機構とは、ニューラル ネットワークに入力配列の重要な部分を認識させるための高度な技術です。アテンションの仕組みと、アテンションを活用して機械翻訳、テキスト要約、質問応答といったさまざまな ML タスクのパフォーマンスを改善する方法を説明します。

詳細

このコースでは拡散モデルについて説明します。拡散モデルは ML モデル ファミリーの一つで、最近、画像生成分野での有望性が示されました。拡散モデルは物理学、特に熱力学からインスピレーションを得ています。ここ数年、拡散モデルは研究と産業界の両方で広まりました。拡散モデルは、Google Cloud の最先端の画像生成モデルやツールの多くを支える技術です。このコースでは、拡散モデルの背景にある理論と、モデルを Vertex AI でトレーニングしてデプロイする方法について説明します。

詳細

この入門レベルのマイクロラーニング コースでは、責任ある AI の概要と重要性、および Google が責任ある AI を自社プロダクトにどのように実装しているのかについて説明します。また、Google の AI に関する 7 つの原則についても説明します。

詳細

この入門レベルのマイクロラーニング コースでは、生成 AI の概要、利用方法、従来の機械学習の手法との違いについて説明します。独自の生成 AI アプリを作成する際に利用できる Google ツールも紹介します。

詳細

「Google Kubernetes Engine を使用した構築: ワークロード」を履修することで、クラウドネイティブ アプリケーション開発のすべてを網羅した取り組みに着手することができるようになります。学習体験全体を通して、Kubernetes オペレーション、デプロイ管理、GKE ネットワーキング、永続ストレージについて詳しく学びます。 これは「Google Kubernetes Engine を使用した構築」シリーズの最初のコースです。このコースを修了したら、「Google Kubernetes Engine を使用した構築: 実践」コースに登録してください。

詳細

このコース「Google Kubernetes Engine を使用した構築: 基礎」では、Google Cloud の全体像と基本的な考え方を確認した後、ソフトウェア コンテナを作成して管理する方法と Kubernetes のアーキテクチャについて説明します。

詳細

このコースでは、実績ある設計パターンを利用して、信頼性と効率に優れたソリューションを Google Cloud で構築する方法を学習します。本コースは、Google Compute Engine を使用した構築 または Google Kubernetes Engine を使用した構築 のコースの続きで、これらのコースで取り上げているテクノロジーの実践経験があることを前提としています。参加者は、講義、設計アクティビティ、ハンズオンラボを通して、ビジネス要件と技術要件を定義し、バランスを取りながら、信頼性、可用性、安全性、費用対効果に優れた Google Cloud のデプロイを設計する方法を学びます。

詳細

このコースでは、Kubernetes と Google Kubernetes Engine(GKE)のセキュリティについて、およびロギングとモニタリングについて学びます。また、Google Cloud マネージド ストレージ サービスとデータベース サービスを GKE 内で使用する方法についても学びます。 これは「Google Kubernetes Engine を使用した構築」シリーズの 2 つ目のコースです。このコースを修了したら、「信頼性に優れた Google Cloud インフラストラクチャ: 設計とプロセス」コースか、「Hybrid Cloud Infrastructure Foundations with Anthos」コースに登録してください。

詳細

This course has been updated, please enroll in the new Elastic Google Cloud Infrastructure: Scaling and Automation.

詳細

このオンデマンド速習コースでは、Google Cloud Platform が提供する包括的で柔軟なインフラストラクチャとプラットフォーム サービスについて紹介します。受講者は、動画講義、デモ、ハンズオンラボを通してソリューションの各要素について学習し、演習を行います。これらの要素には、ネットワーク、システム、アプリケーション サービスなどのインフラストラクチャ コンポーネントが含まれます。また、ネットワークの安全な相互接続、負荷分散、自動スケーリング、インフラストラクチャの自動化、マネージド サービスなど、実用的なソリューションの演習も行います。 受講条件: このコースで効果的に学習するには、次の条件を満たしている必要があります。 • Google Cloud Platform Fundamentals(Core Infrastructure または AWS Professionals)を修了しているか、同等の経験がある ##a dummy change • Essential Cloud Infrastructure: Foundation を修了しているか、同等の経験がある • Essential Cloud Infrastructure: Core Services を修了しているか、同等の経験がある • コマンドライン ツールと Linux オペレーティング システム環境についての基本的なスキルがある • システム運用の経験がある(オンプレミスまたはパブリック クラウド環境でのアプリケーションのデプロイと管理を含む) >>> よくある質問に記載のとおり、このコースに登録すると Qwiklabs の利用規約(https://qwiklabs.com/terms_of_service)に同意したことになります。<<<

詳細

このオンデマンド速習コースでは、Google Cloud で提供される包括的かつ柔軟なインフラストラクチャとプラットフォームのサービスについて、Compute Engine を中心に紹介します。受講者は、動画講義、デモ、ハンズオンラボを通してソリューションの各要素について学習し、演習を行います。これらの要素には、ネットワーク、システム、アプリケーション サービスなどのインフラストラクチャ コンポーネントが含まれます。また、実践的なソリューションの実装も取り上げ、顧客指定の暗号鍵、セキュリティとアクセス管理、割り当てと課金、リソース モニタリングなどについても学習します。

詳細

このオンデマンド速習コースでは、Google Cloud で提供される包括的かつ柔軟なインフラストラクチャとプラットフォームのサービスについて、Compute Engine を中心に紹介します。受講者は、動画講義、デモ、ハンズオンラボを通してさまざまなソリューションの各要素について学習し、実際のデプロイを演習します。これらの要素には、ネットワークや仮想マシン、アプリケーション サービスなどのインフラストラクチャ コンポーネントが含まれます。コンソールと Cloud Shell を使用して Google Cloud を運用する方法についても学習します。また、クラウド アーキテクトの役割、インフラストラクチャ設計の方法、Virtual Private Cloud(VPC)を使用した仮想ネットワークの構成、プロジェクト、ネットワーク、サブネットワーク、IP アドレス、ルート、ファイアウォール ルールについても学習します。

詳細

This content is deprecated. Please see the latest version of the course, here.

詳細