Alan Cruz Ferrari
Participante desde 2023
Participante desde 2023
Neste curso, os participantes vão conhecer as ferramentas de MLOps e as práticas recomendadas para a implantação, a avaliação, o monitoramento e a operação de sistemas de ML de produção no Google Cloud. MLOps é uma disciplina com foco na implantação, no teste, no monitoramento e na automação de sistemas de ML em produção. Profissionais de engenharia de machine learning usam ferramentas para fazer melhorias contínuas e avaliações de modelos implantados. São profissionais que trabalham com ciências de dados e desenvolvem modelos para garantir a velocidade e o rigor na implantação de modelos com melhor desempenho.
This structured course is for developers interested in building intelligent agents using the Agent Development Kit (ADK). It combines hands-on experience, core concepts, and practical application, to provide a comprehensive guide to using ADK. You can also join our community of Google Cloud experts and peers to ask questions, collaborate on answers, and connect with the Googlers making the products you use every day.
Agentes de IA generativa: transforme sua organização é o quinto e último curso do programa de aprendizado de liderança em IA generativa. Nele, você aprende como as organizações podem usar agentes de IA generativa personalizados para enfrentar desafios específicos nos negócios. Você aprende na prática a construir um agente básico de IA generativa e quais são os componentes desses agentes, como modelos, ciclos de raciocínio e ferramentas.
Apps de IA generativa: transforme seu trabalho é o quarto curso do programa de aprendizado de liderança em IA Generativa. Esse curso apresenta os aplicativos de IA generativa do Google, como Gemini para Workspace e NotebookLM. Além disso, aborda conceitos como embasamento, geração aumentada de recuperação, construção de comandos eficazes e criação de fluxos de trabalho automatizados.
IA generativa: encare o cenário atual é o terceiro curso do programa de aprendizado de liderança em IA generativa. A IA generativa está mudando a forma como trabalhamos e interagimos com o mundo ao nosso redor. Mas, como líder, como aproveitar esse potencial para gerar resultados de negócios reais? Neste curso, você vai conhecer as diferentes camadas da criação de soluções de IA generativa, as ofertas do Google Cloud e os fatores a serem considerados ao selecionar uma solução.
IA generativa: conceitos básicos é o segundo curso do programa de aprendizado de liderança em IA generativa. Neste curso, você conhece os conceitos básicos da IA generativa, analisa as diferenças entre IA, ML e IA generativa, e aprende como vários tipos de dados possibilitam que a IA generativa lide com desafios de negócios. Além disso, aprende sobre as estratégias do Google Cloud para lidar com as limitações dos modelos de fundação e os principais desafios para o desenvolvimento e a implantação seguros e responsáveis da IA.
IA generativa: para além do chatbot é o primeiro curso do programa de aprendizado de liderança em IA generativa e não tem pré-requisitos. Este curso tem como objetivo ir além do conhecimento básico de chatbots para explorar o verdadeiro potencial da IA generativa para sua organização. Você aprenderá conceitos como modelos de fundação e engenharia de comando, que são cruciais para aproveitar o poder da IA generativa. O curso também aborda considerações importantes ao desenvolver uma estratégia de IA generativa de sucesso para a organização.
Neste curso, vamos conhecer o Vertex AI Studio, uma ferramenta para interagir com modelos de IA generativa, prototipar ideias comerciais e colocá-las em produção. Com a ajuda de um caso de uso imersivo, lições interessantes e um laboratório, você vai conhecer o ciclo de vida do comando à produção, além de usar o Vertex AI Studio para aplicativos multimodais do Gemini, design e engenharia de comandos e ajuste de modelos. O objetivo é permitir que você descubra todo o potencial da IA generativa nos seus projetos com o Vertex AI Studio.
A Business Leader in Generative AI can articulate the capabilities of core cloud Generative AI products and services and understand how they benefit organizations. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey and how they can leverage Google Cloud's generative AI products to overcome these challenges.
O curso apresenta os benefícios de usar a Vertex AI Feature Store e ensina a melhorar a acurácia dos modelos de ML e a identificar as colunas de dados que apresentam os atributos mais úteis. Ele também oferece conteúdo teórico e laboratórios sobre engenharia de atributos com BigQuery ML, Keras e TensorFlow.
Quanto maior é o uso da inteligência artificial empresarial e do machine learning, mais importante é desenvolvê-los de maneira responsável. Para muitos, falar sobre a IA responsável pode ser mais fácil, mas colocá-la em prática é um desafio. Se você tem interesse em aprender a operacionalizar a IA responsável na sua organização, este curso é para você. Nele, você vai aprender como o Google Cloud faz isso hoje, além de analisar práticas recomendadas e lições aprendidas, a fim de criar uma base para elaborar sua própria abordagem de IA responsável.
Receba um selo de habilidade ao concluir os cursos "Introduction to Generative AI", "Introduction to Large Language Models" e "Introduction to Responsible AI". Consiga a aprovação nos testes finais dos cursos para demonstrar seu conhecimento sobre os conceitos básicos da IA generativa. Os selos de habilidades são digitais. Eles são emitidos pelo Google Cloud como forma de reconhecer sua capacidade de trabalhar com os produtos e serviços do Cloud. Torne seu perfil público e adicione os selos de habilidades às suas mídias sociais para mostrar seus conhecimentos.
This content is deprecated. Please see the latest version of the course, here.
Este é um curso de microaprendizagem introdutório que busca explicar a IA responsável: o que é, qual é a importância dela e como ela é aplicada nos produtos do Google. Ele também contém os 7 princípios de IA do Google.
Este é um curso de microlearning de nível introdutório que explica o que são modelos de linguagem grandes (LLM), os casos de uso em que podem ser aplicados e como é possível fazer o ajuste de comandos para aprimorar o desempenho dos LLMs. O curso também aborda as ferramentas do Google que ajudam a desenvolver seus próprios apps de IA generativa.
Este é um curso de microaprendizagem introdutório que busca explicar a IA generativa: o que é, como é usada e por que ela é diferente de métodos tradicionais de machine learning. O curso também aborda as ferramentas do Google que ajudam você a desenvolver apps de IA generativa.
Este curso é uma introdução ao mecanismo de atenção, uma técnica avançada que permite que as redes neurais se concentrem em partes específicas de uma sequência de entrada. Você vai entender como a atenção funciona e como ela pode ser usada para melhorar o desempenho de várias tarefas de machine learning (como tradução automática, resumo de texto e resposta a perguntas).
Neste curso, apresentamos os modelos de difusão, uma família de modelos de machine learning promissora no campo da geração de imagens. Os modelos de difusão são baseados na física, mais especificamente na termodinâmica. Nos últimos anos, eles se popularizaram no setor e nas pesquisas. Esses modelos servem de base para ferramentas e modelos avançados de geração de imagem no Google Cloud. Este curso é uma introdução à teoria dos modelos de difusão e como eles devem ser treinados e implantados na Vertex AI.
Este curso ensina a criar modelos de ML com o TensorFlow e o Keras, melhorar a acurácia deles e desenvolver modelos para uso em escala.
O curso começa com a seguinte discussão: como melhorar a qualidade dos dados e fazer uma análise exploratória deles? Descrevemos o AutoML na Vertex AI e como criar, treinar e implantar um modelo de ML sem escrever nenhuma linha de código. Você vai conhecer os benefícios do BigQuery ML. Depois vamos falar sobre como otimizar um modelo de machine learning (ML) e como a generalização e a amostragem podem ajudar na avaliação de qualidade dos modelos de ML em treinamentos personalizados.
Neste curso, apresentamos os recursos de IA e machine learning (ML) no Google Cloud que criam projetos de IA generativa e preditiva. Vamos conhecer as tecnologias, os produtos e as ferramentas disponíveis em todo o ciclo de vida de dados à IA, o que inclui os fundamentos dessa tecnologia, o desenvolvimento e as soluções dela. O objetivo é ajudar cientistas de dados, desenvolvedores de IA e engenheiros de ML a aprimorar habilidades e o conhecimento com experiências de aprendizado envolventes e exercícios práticos.