Akshitha Anil
Participante desde 2022
Liga Prata
25630 pontos
Participante desde 2022
Demonstrate your ability to implement updated prompt engineering techniques and utilize several of Gemini's key capacilities including multimodal understanding and function calling. Then integrate generative AI into a RAG application deployed to Cloud Run. This course contains labs that are to be used as a test environment. They are deployed to test your understanding as a learner with a limited scope. These technologies can be used with fewer limitations in a real world environment.
Conclua o selo de habilidade intermediário Conheça a IA generativa com a API Gemini na Vertex AI para demonstrar conhecimento nas seguintes atividades: geração de texto, análise de imagens e vídeos para criação de conteúdo aprimorado e aplicação de técnicas de chamada de função na API Gemini. Saiba como aproveitar as técnicas sofisticadas do Gemini, conhecer a geração de conteúdo multimodal e ampliar os recursos dos seus projetos com tecnologia de IA.
Conheça aplicativos, ferramentas e tecnologias de pesquisa com tecnologia de IA neste curso. Aprenda a fazer pesquisa semântica usando embeddings de vetores, pesquisa híbrida combinando abordagens semânticas e por palavras-chave, e geração aumentada por recuperação (RAG), minimizando as alucinações artificiais da IA como um agente de IA embasado. Ganhe experiência prática com a pesquisa vetorial da Vertex AI para criar um mecanismo de pesquisa inteligente.
(This course was previously named Multimodal Prompt Engineering with Gemini and PaLM) This course teaches how to use Vertex AI Studio, a Google Cloud console tool for rapidly prototyping and testing generative AI models. You learn to test sample prompts, design your own prompts, and customize foundation models to handle tasks that meet your application's needs. Whether you are looking for text, chat, code, image or speech generative experiences Vertex AI Studio offers you an interface to work with and APIs to integrate your production application.
This content is deprecated. Please see the latest version of the course, here.
In this course, you'll use text embeddings for tasks like classification, outlier detection, text clustering and semantic search. You'll combine semantic search with the text generation capabilities of an LLM to build Retrieval Augmented Generation (RAG) solutions, such as for question-answering systems, using Google Cloud's Vertex AI and Google Cloud databases.
This course on Integrate Vertex AI Search and Conversation into Voice and Chat Apps is composed of a set of labs to give you a hands on experience to interacting with new Generative AI technologies. You will learn how to create end-to-end search and conversational experiences by following examples. These technologies complement predefined intent-based chat experiences created in Dialogflow with LLM-based, generative answers that can be based on your own data. Also, they allow you to porvide enterprise-grade search experiences for internal and external websites to search documents, structure data and public websites.
This course explores the different products and capabilities of Customer Engagement Suite (CES) and Conversational agents. Additionally, it covers the foundational principles of conversation design to craft engaging and effective experiences that emulate human-like experiences specific to the Chat channel.
In this course you will learn how to use the new generative AI features in Dialogflow CX to create virtual agents that can have more natural and engaging conversations with customers. Discover how to deploy generative fallback responses to gracefully handle errors and omissions in customer conversations, deploy generators to increase intent coverage, and structure, ingest, and manage data in a data store. And explore how to deploy and maintain generative AI agents using your data, and deploy and maintain hybrid agents in combination with existing intent-based design paradigms.
Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.
(Previously named "Developing apps with Vertex AI Agent Builder: Search". Please note there maybe instances in this course where previous product names and titles are used) Enterprises of all sizes have trouble making their information readily accessible to employees and customers alike. Internal documentation is frequently scattered across wikis, file shares, and databases. Similarly, consumer-facing sites often offer a vast selection of products, services, and information, but customers are frustrated by ineffective site search and navigation capabilities. This course teaches you to use AI Applications to integrate enterprise-grade generative AI search.
Neste curso, vamos conhecer o Vertex AI Studio, uma ferramenta para interagir com modelos de IA generativa, prototipar ideias comerciais e colocá-las em produção. Com a ajuda de um caso de uso imersivo, lições interessantes e um laboratório, você vai conhecer o ciclo de vida do comando à produção, além de usar o Vertex AI Studio para aplicativos multimodais do Gemini, design e engenharia de comandos e ajuste de modelos. O objetivo é permitir que você descubra todo o potencial da IA generativa nos seus projetos com o Vertex AI Studio.
Quanto maior é o uso da inteligência artificial empresarial e do machine learning, mais importante é desenvolvê-los de maneira responsável. Para muitos, falar sobre a IA responsável pode ser mais fácil, mas colocá-la em prática é um desafio. Se você tem interesse em aprender a operacionalizar a IA responsável na sua organização, este curso é para você. Nele, você vai aprender como o Google Cloud faz isso hoje, além de analisar práticas recomendadas e lições aprendidas, a fim de criar uma base para elaborar sua própria abordagem de IA responsável.
Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.
Este é um curso de microaprendizagem introdutório que busca explicar a IA responsável: o que é, qual é a importância dela e como ela é aplicada nos produtos do Google. Ele também contém os 7 princípios de IA do Google.
Este é um curso de microlearning de nível introdutório que explica o que são modelos de linguagem grandes (LLM), os casos de uso em que podem ser aplicados e como é possível fazer o ajuste de comandos para aprimorar o desempenho dos LLMs. O curso também aborda as ferramentas do Google que ajudam a desenvolver seus próprios apps de IA generativa.
Este é um curso de microaprendizagem introdutório que busca explicar a IA generativa: o que é, como é usada e por que ela é diferente de métodos tradicionais de machine learning. O curso também aborda as ferramentas do Google que ajudam você a desenvolver apps de IA generativa.
This course discusses the key elements of Google's Data Warehouse solution portfolio and strategy.
Welcome to Cloud Composer, where we discuss how to orchestrate data lake workflows with Cloud Composer.
Enterprises of all sizes have trouble making their information readily accessible to employees and customers alike. Internal documentation is frequently scattered across wikis, file shares, and databases. Similarly, consumer-facing sites often offer a vast selection of products, services, and information, but customers are frustrated by ineffective site search and navigation capabilities. This course teaches you to use Generative AI App Builder to integrate enterprise-grade generative AI search.
Nesta Quest de nível introdutório, você terá acesso a treinamentos práticos com os principais serviços e ferramentas do Google Cloud Platform. A Quest "GCP Essentials" é a primeira recomendação para quem está aprendendo a usar o Google Cloud. Com ela, quem tem pouco ou nenhum conhecimento sobre nuvem ganha experiência prática para aplicar no primeiro projeto do GCP. Esta Quest proporciona um contato inicial com os recursos fundamentais da plataforma, como o registro de comandos do Cloud Shell, a implementação da sua primeira máquina virtual, a execução de aplicativos no Kubernetes Engine e o balanceamento de carga. Assista também os vídeos rápidos que explicam os conceitos principais de cada laboratório.
Este curso introdutório conta com recursos exclusivos entre as outras ofertas de cursos. Os laboratórios foram criados para oferecer um treinamento prático aos profissionais de TI nos tópicos e serviços que aparecem na Certificação em Google Cloud Associate Cloud Engineer. Do IAM à rede, até a implantação do Kubernetes Engine, este curso é composto por laboratórios específicos que vão testar seus conhecimentos sobre o Google Cloud. Embora a prática com esses laboratórios ajude a desenvolver suas habilidades e conhecimento, recomendamos que você também estude pelo guia do exame e por outros recursos de preparação disponíveis.
This course covers BigQuery fundamentals for professionals who are familiar with SQL-based cloud data warehouses in Redshift and want to begin working in BigQuery. Through interactive lecture content and hands-on labs, you learn how to provision resources, create and share data assets, ingest data, and optimize query performance in BigQuery. Drawing upon your knowledge of Redshift, you also learn about similarities and differences between Redshift and BigQuery to help you get started with data warehouses in BigQuery. After this course, you can continue your BigQuery journey by completing the skill badge quest titled Build and Optimize Data Warehouses with BigQuery.
This course covers BigQuery fundamentals for professionals who are familiar with SQL-based cloud data warehouses in Teradata and want to begin working in BigQuery. Through interactive lecture content and hands-on labs, you learn how to provision resources, create and share data assets, ingest data, and optimize query performance in BigQuery. Drawing upon your knowledge of Teradata, you also learn about similarities and differences between Teradata and BigQuery to help you get started with data warehouses in BigQuery. After this course, you can continue your BigQuery journey by completing the skill badge quest titled Build and Optimize Data Warehouses with BigQuery.
Quer criar ou otimizar um armazenamento de dados? Aprenda práticas recomendadas para extrair, transformar e carregar dados no Google Cloud com o BigQuery. Nesta série de laboratórios interativos, você vai criar e otimizar seu próprio armazenamento usando diversos conjuntos de dados públicos de grande escala do BigQuery. O BigQuery é um banco de dados de análise NoOps, totalmente gerenciado e de baixo custo desenvolvido pelo Google. Com ele, você pode consultar muitos terabytes de dados sem ter que gerenciar uma infraestrutura ou precisar de um administrador de banco de dados. O BigQuery usa SQL e está disponível no modelo de pagamento por utilização. Com ele, você se concentra na análise dos dados para encontrar insights relevantes.
Conclua o selo de habilidade intermediário Criar um data warehouse com o BigQuery para mostrar que você sabe mesclar dados para criar novas tabelas; solucionar problemas de mesclagens; adicionar dados ao final com uniões; criar tabelas particionadas por data; além de trabalhar com JSON, matrizes e structs no BigQuery. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência nos produtos e serviços do Cloud, comprovando sua capacidade de aplicar o conhecimento em um ambiente prático e interativo. Conclua o curso com selo de habilidade e o laboratório com desafio da avaliação final para receber uma certificação digital que você pode compartilhar com seus contatos.
Este é o primeiro de uma série de três cursos sobre processamento de dados sem servidor com o Dataflow. Nele, vamos relembrar o que é o Apache Beam e qual é a relação entre ele e o Dataflow. Depois, falaremos sobre a visão do Apache Beam e os benefícios do framework de portabilidade desse modelo de programação. Com esse processo, o desenvolvedor pode usar a linguagem de programação favorita com o back-end de execução que quiser. Em seguida, mostraremos como o Dataflow permite a separação entre a computação e o armazenamento para economizar dinheiro. Além disso, você vai aprender como as ferramentas de identidade, acesso e gerenciamento interagem com os pipelines do Dataflow. Por fim, vamos ver como implementar o modelo de segurança ideal para seu caso de uso no Dataflow.
Conclua o selo de habilidade introdutório Gerar insights a partir de dados do BigQuery para mostrar que você sabe gravar consultas SQL, consultar tabelas públicas e carregar dados de amostra no BigQuery, solucionar erros comuns de sintaxe com o validador de consultas no BigQuery e criar relatórios no Looker Studio fazendo a conexão com dados do BigQuery.
Este curso ajuda você a se preparar para o exame Associate Cloud Engineer. Você vai aprender sobre os domínios do Google Cloud abordados no exame e como criar um plano de estudos para melhorar seu conhecimento sobre o assunto.
Conquiste um selo de habilidade ao concluir o curso Como desenvolver sua rede do Google Cloud, que ensina várias maneiras de implantar e monitorar aplicativos, incluindo como analisar os papéis do IAM e adicionar/remover acesso a projetos, criar redes VPC, implantar e monitorar VMs do Compute Engine; gravar consultas SQL, implantar e monitorar VMs no Compute Engine e implantar aplicativos usando Kubernetes com múltiplas abordagens de implantação.
Conquiste um selo de habilidade ao concluir o curso Como configurar um ambiente de desenvolvimento de apps no Google Cloud. Nele, você aprende a criar e conectar uma infraestrutura em nuvem focada em armazenamento usando recursos básicos das seguintes tecnologias: Cloud Storage, Identity and Access Management, Cloud Functions e Pub/Sub.
Neste curso intensivo sob demanda, os participantes vão conhecer os serviços abrangentes e flexíveis de infraestrutura e plataforma fornecidos pelo Google Cloud. Com o auxílio de videoaulas, demonstrações e laboratórios práticos, os participantes têm a chance de conhecer e implantar elementos da solução. Isso inclui interconexão segura entre redes, balanceamento de carga, escalonamento automático, automação de infraestrutura e serviços gerenciados.
Neste curso intensivo sob demanda, os participantes vão conhecer os serviços abrangentes e flexíveis de infraestrutura e plataforma fornecidos pelo Google Cloud, com foco no Compute Engine. Com o auxílio de videoaulas, demonstrações e laboratórios práticos, os participantes têm a chance de conhecer e implantar elementos da solução, incluindo componentes de infraestrutura, como redes, sistemas e serviços de aplicativos. O curso também aborda a implantação de soluções práticas, como chaves de criptografia fornecidas pelo cliente, gerenciamento de segurança e acesso, cotas e faturamento, além do monitoramento de recursos.
Neste curso intensivo sob demanda, os participantes vão conhecer os serviços abrangentes e flexíveis de infraestrutura e plataforma fornecidos pelo Google Cloud, com foco no Compute Engine. Com o auxílio de videoaulas, demonstrações e laboratórios práticos, os participantes têm chance de conhecer e implantar elementos da solução, incluindo componentes de infraestrutura, como redes, máquinas virtuais e serviços de aplicativos. Você vai aprender a usar o Google Cloud no Console e no Cloud Shell. Além disso, vamos detalhar o papel de um arquiteto de nuvem, abordagens de design de infraestruturas, configuração de redes virtuais com a nuvem privada virtual (VPC), projetos, redes, sub-redes, endereços IP, rotas e regras de firewall.
"Noções básicas do Google Cloud: infraestrutura principal" é uma apresentação da terminologia e de conceitos importantes para trabalhar com o Google Cloud. Usando vídeos e laboratórios práticos, o curso apresenta e compara vários serviços de armazenamento e computação do Google Cloud, além de ferramentas importantes para o gerenciamento de políticas e recursos.