Jose Faria
Mitglied seit 2024
Gold League
31751 Punkte
Mitglied seit 2024
Da die Nutzung von künstlicher Intelligenz und Machine Learning in Unternehmen weiter zunimmt, wird auch deren verantwortungsbewusste Entwicklung ein immer wichtigeres Thema. Dabei ist es für viele schwierig, die Überlegungen zur verantwortungsbewussten Anwendung von KI in die Praxis umzusetzen. Wenn Sie wissen möchten, wie sich die verantwortungsbewusste Anwendung von KI in die Praxis umsetzen, also operationalisieren lässt, finden Sie in diesem Kurs entsprechende Hilfestellungen. In diesem Kurs erfahren Sie, wie dies mit Google Cloud heutzutage möglich ist, inklusive entsprechender Best Practices und Erkenntnisse. Es wird gezeigt, welches Framework Google Cloud bietet, um einen eigenen Ansatz für die verantwortungsbewusste Anwendung von KI zu entwickeln.
Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.
In diesem Einführungskurs im Microlearning-Format wird erklärt, was verantwortungsbewusste Anwendung von KI bedeutet, warum sie wichtig ist und wie Google dies in seinen Produkten berücksichtigt. Darüber hinaus werden die 7 KI-Grundsätze von Google behandelt.
In diesem Einführungskurs im Microlearning-Format wird untersucht, was Large Language Models (LLM) sind, für welche Anwendungsfälle sie genutzt werden können und wie die LLM-Leistung durch Feinabstimmung von Prompts gesteigert werden kann. Darüber hinaus werden Tools von Google behandelt, die das Entwickeln eigener Anwendungen basierend auf generativer KI ermöglichen.
In diesem Einführungskurs im Microlearning-Format wird erklärt, was generative KI ist, wie sie genutzt wird und wie sie sich von herkömmlichen Methoden für Machine Learning unterscheidet. Darüber hinaus werden Tools von Google behandelt, mit denen Sie eigene Anwendungen basierend auf generativer KI entwickeln können.
Künstliche Intelligenz (KI) bietet revolutionäre Möglichkeiten, geht aber auch mit neuen Sicherheitsherausforderungen einher. In diesem Kurs lernen Führungskräfte im Bereich Sicherheit und Datenschutz Strategien für den sicheren Umgang mit KI in ihren Unternehmen kennen. Es wird ein Framework für das proaktive Erkennen und Mindern KI-spezifischer Risiken, den Schutz sensibler Daten, das Einhalten rechtlicher Vorgaben und den Aufbau einer robusten KI-Infrastruktur vorgestellt. Anhand von Anwendungsfällen aus vier verschiedenen Branchen wird gezeigt, wie sich diese Strategien auf reale Szenarien anwenden lassen.
In diesem Kurs werden wichtige Themen zu Datenschutz und Sicherheit beim Einsatz von künstlicher Intelligenz vorgestellt. Dabei lernen Sie, wie Sie mit Google Cloud-Produkten und Open-Source-Tools empfohlene Vorgehensweisen im Zusammenhang mit Datenschutz und Sicherheit beim Einsatz von KI umsetzen.
In diesem Kurs werden Konzepte in Bezug auf die Interpretierbarkeit und Transparenz von künstlicher Intelligenz vorgestellt. Sie erfahren, warum die Transparenz der KI für Entwickler-Teams wichtig ist. Dabei lernen Sie praktische Techniken und Tools kennen, mit denen Sie sowohl die Interpretierbarkeit als auch die Transparenz von Daten und KI-Modellen optimieren können.
In diesem Kurs werden Konzepte für die verantwortungsbewusste Anwendung von KI und KI-Grundsätze vorgestellt. Es werden Techniken behandelt, wie Sie Fairness und Verzerrung (Bias) in der Praxis erkennen sowie Verzerrung in KI- und ML-Anwendungen reduzieren können. Dabei lernen Sie, wie Sie mit Google Cloud-Produkten und Open-Source-Tools Best Practices für eine verantwortungsbewusste Anwendung von KI umsetzen.
Dieser Kurs gibt Machine-Learning-Anwendern alle grundlegenden Tools, Techniken und Best Practices zur Bewertung von generativen und prädiktiven KI-Modellen an die Hand. Die Modellbewertung ist ein wichtiger Schritt, bei dem geprüft wird, ob ML-Systeme in der Produktion zuverlässige, genaue und leistungsstarke Ergebnisse erzielen. Die Teilnehmer erwerben fundierte Kenntnisse über verschiedene Bewertungsmesswerte und -methoden und lernen, sie auf unterschiedliche Modelltypen und Aufgaben anzuwenden. Im Kurs wird schwerpunktmäßig auf die besonderen Herausforderungen generativer KI-Modelle eingegangen und es werden Strategien vorgestellt, wie sich diese effektiv bewältigen lassen. Die Teilnehmer lernen auf der Plattform Vertex AI von Google Cloud, robuste Bewertungsprozesse zur Auswahl, Optimierung und kontinuierlichen Überwachung des Modells zu implementieren.
Dieser Kurs vermittelt Ihnen das Wissen und die nötigen Tools, um die speziellen Herausforderungen zu erkennen, mit denen MLOps-Teams bei der Bereitstellung und Verwaltung von Modellen basierend auf generativer KI konfrontiert sind. Sie erfahren, wie KI-Teams durch Vertex AI dabei unterstützt werden, MLOps-Prozesse zu optimieren und mit Projekten erfolgreich zu sein, in denen generative KI zum Einsatz kommt.
Welcome to the Getting Started with Google Kubernetes Engine course. If you're interested in Kubernetes, a software layer that sits between your applications and your hardware infrastructure, then you’re in the right place! Google Kubernetes Engine brings you Kubernetes as a managed service on Google Cloud. The goal of this course is to introduce the basics of Google Kubernetes Engine, or GKE, as it’s commonly referred to, and how to get applications containerized and running in Google Cloud. The course starts with a basic introduction to Google Cloud, and is then followed by an overview of containers and Kubernetes, Kubernetes architecture, and Kubernetes operations.
Welcome to the third course of the "Networking in Google Cloud" series: Network Architecture! In this course, you will explore the fundamentals of designing efficient and scalable network architectures within Google Cloud. In the first module, Introduction to Network Architecture, we'll start by introducing you to the core components and concepts of network architecture, including subnets, routes, firewalls, and load balancing. Then in the second module, network topologies, we'll dive into various network topologies commonly used in Google Cloud, discussing their strengths, and weaknesses.
In „Google Cloud-Grundlagen: Kerninfrastruktur“ werden wichtige Konzepte und die Terminologie für die Arbeit mit Google Cloud vorgestellt. In Videos und praxisorientierten Labs werden viele Computing- und Speicherdienste von Google Cloud sowie wichtige Tools für die Ressourcen- und Richtlinienverwaltung präsentiert und miteinander verglichen.
Configure and Maintain CCAIP as an Admin is a course that provides end users with essential learning about the core features, functionality, reporting, and configuration information most relevant to the role. This course is most appropriate for those who perform administrative functions to support the operation of the contact center as well as analyze, troubleshoot, and configure the platform to best meet the demands of customers. While this program will review some monitoring and reporting aspects, those topics are explored in depth in the course titled, “Managing Functions and Reporting with CCAIP.”
Manage Functions and Reporting with CCAI Platform provides end-users with essential training about the core features, functionality, monitoring, reporting, and configuration information that is most relevant to the role. This course is most appropriate for those at the managerial level of the contact center who are tasked with monitoring the effectiveness, efficiency, and KPI attainment for all consumer interactions. While this program will review some aspects of settings and configuration options, the major focus is on reporting functionality in CCAI Platform.
This course teaches contact center agents about the core agent features and functionality in Contact Center AI Platform (CCAIP). CCAIP is a unified contact center platform that accelerates an organization's ability to leverage and deploy CCAI without relying on multiple technology providers. This course is most appropriate for those who handle consumer interactions via chat and call.
This course helps you structure your preparation for the Associate Cloud Engineer exam. You will learn about the Google Cloud domains covered by the exam and how to create a study plan to improve your domain knowledge.
The Google Cloud Rapid Migration & Modernization Program (RaMP) is a holistic, end-to-end migration/modernization program that helps customers & partners leverage expertise and best practices, lower risk, control costs, and simplify a customer's path to cloud success. This course will give an overview of the program and some of the tools and best practices available to support customer migrations & modernizations.
This workload aims to upskill Google Cloud partners to deploy and manage Google Backup and Disaster Recovery (BDR). The following will be addressed: the core components and business value of Google BDR, the prerequisites before installing Google BDR, the initial deployment of Google BDR, creating and configuring components of a Backup Plan, the components of a Backup Plan, discovering VMware and Compute Engine VMs, and protecting, backing up, and restoring VMs.