(Previously named "Developing apps with Vertex AI Agent Builder: Search". Please note there maybe instances in this course where previous product names and titles are used) Enterprises of all sizes have trouble making their information readily accessible to employees and customers alike. Internal documentation is frequently scattered across wikis, file shares, and databases. Similarly, consumer-facing sites often offer a vast selection of products, services, and information, but customers are frustrated by ineffective site search and navigation capabilities. This course teaches you to use AI Applications to integrate enterprise-grade generative AI search.
Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.
This course will help ML Engineers, Developers, and Data Scientists implement Large Language Models for Generative AI use cases with Vertex AI. The first two modules of this course contain links to videos and prerequisite course materials that will build your knowledge foundation in Generative AI. Please do not skip these modules. The advanced modules in this course assume you have completed these earlier modules.
Ce cours présente Vertex AI Studio, un outil permettant d'interagir avec des modèles d'IA générative, de prototyper des idées commerciales et de les envoyer en production. Au moyen d'un cas d'utilisation immersif, de leçons captivantes et d'un atelier pratique, vous allez découvrir le cycle de vie de la requête au produit. Vous apprendrez également à utiliser Vertex AI Studio pour les applications multimodales Gemini, la conception de requêtes, le prompt engineering (ingénierie des requêtes) et le réglage de modèles. L'objectif est de vous permettre d'exploiter tout le potentiel de l'IA générative dans vos projets avec Vertex AI Studio.
Dans ce cours, vous allez apprendre à créer un modèle de sous-titrage d'images à l'aide du deep learning. Vous découvrirez les différents composants de ce type de modèle, comme l'encodeur et le décodeur, et comment l'entraîner et l'évaluer. À la fin du cours, vous serez en mesure de créer vos propres modèles de sous-titrage d'images et de les utiliser pour générer des sous-titres pour des images.
This course helps you structure your preparation for the Professional Cloud Engineer exam. You will learn about the Google Cloud domains covered by the exam and how to create a study plan to improve your domain knowledge.
This content is deprecated. Please see the latest version of the course, here.
Avec l'essor de l'utilisation de l'intelligence artificielle et du machine learning en entreprise, il est de plus en plus important de développer ces technologies de manière responsable. Pour beaucoup, le véritable défi réside dans la mise en pratique de l'IA responsable, qui s'avère bien plus complexe que dans la théorie. Si vous souhaitez découvrir comment opérationnaliser l'IA responsable dans votre organisation, ce cours est fait pour vous. Dans ce cours, vous allez apprendre comment Google Cloud procède actuellement, en s'appuyant sur des bonnes pratiques et les enseignements tirés, afin de vous fournir un framework pour élaborer votre propre approche d'IA responsable.
Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.
Ce cours présente l'architecture Transformer et le modèle BERT (Bidirectional Encoder Representations from Transformers). Vous découvrirez quels sont les principaux composants de l'architecture Transformer, tels que le mécanisme d'auto-attention, et comment ils sont utilisés pour créer un modèle BERT. Vous verrez également les différentes tâches pour lesquelles le modèle BERT peut être utilisé, comme la classification de texte, les questions-réponses et l'inférence en langage naturel. Ce cours dure environ 45 minutes.
Ce cours offre un aperçu de l'architecture encodeur/décodeur, une architecture de machine learning performante souvent utilisée pour les tâches "seq2seq", telles que la traduction automatique, la synthèse de texte et les questions-réponses. Vous découvrirez quels sont les principaux composants de l'architecture encodeur/décodeur, et comment entraîner et exécuter ces modèles. Dans le tutoriel d'atelier correspondant, vous utiliserez TensorFlow pour coder une implémentation simple de cette architecture afin de générer un poème en partant de zéro.
Ce cours présente le mécanisme d'attention, une technique efficace permettant aux réseaux de neurones de se concentrer sur des parties spécifiques d'une séquence d'entrée. Vous découvrirez comment fonctionne l'attention et comment l'utiliser pour améliorer les performances de diverses tâches de machine learning, dont la traduction automatique, la synthèse de texte et les réponses aux questions.
Ce cours présente les modèles de diffusion, une famille de modèles de machine learning qui s'est récemment révélée prometteuse dans le domaine de la génération d'images. Les modèles de diffusion trouvent leur origine dans la physique, et plus précisément dans la thermodynamique. Au cours des dernières années, ils ont gagné en popularité dans la recherche et l'industrie. Ils sont à la base de nombreux modèles et outils Google Cloud avancés de génération d'images. Ce cours vous présente les bases théoriques des modèles de diffusion, et vous explique comment les entraîner et les déployer sur Vertex AI.
Good news! There’s a new updated version of this learning path available for you!Open the new Professional Cloud Network Engineer Certification Learning Path to begin, once you’ve selected the new path all your current progress will be reflected in the new version.
Suivez les cours Introduction to Generative AI, Introduction to Large Language Models et Introduction to Responsible AI, et obtenez un badge de compétence. Votre réussite au quiz final démontrera que vous comprenez les concepts de base relatifs à l'IA générative. Un badge de compétence est un badge numérique délivré par Google Cloud. Il atteste de votre expertise sur les produits et services Google Cloud. Partagez votre badge de compétence en rendant votre profil public et en l'ajoutant à votre profil sur les réseaux sociaux.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA responsable, souligne son importance et décrit comment Google l'implémente dans ses produits. Il présente également les sept principes de l'IA de Google.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce que sont les grands modèles de langage (LLM). Il inclut des cas d'utilisation et décrit comment améliorer les performances des LLM grâce au réglage des requêtes. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA générative, décrit à quoi elle sert et souligne ce qui la distingue des méthodes de machine learning traditionnel. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.
Good news! There’s a new updated version of this learning path available for you!Open the new Professional Cloud Security Engineer Certification Learning Path to begin, once you’ve selected the new path all your current progress will be reflected in the new version.
This course helps learners prepare for the Professional Cloud Security Engineer (PCSE) Certification exam. Learners will be exposed to and engage with exam topics through a series of lectures, diagnostic questions, and knowledge checks. After completing this course, learners will have a personalized workbook that will guide them through the rest of their certification readiness journey.
Terminez le cours intermédiaire Implémenter des pratiques de base pour la sécurité du cloud sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création et l'attribution de rôles avec Identity and Access Management (IAM) ; la création et la gestion de comptes de service ; l'activation d'une connectivité privée sur les réseaux de cloud privé virtuel (VPC) ; la restriction de l'accès aux applications avec Identity-Aware Proxy ; la gestion des clés et des données chiffrées avec Cloud Key Management Service (KMS) ; et la création d'un cluster Kubernetes privé.
Obtenez un badge de compétence en suivant le cours Créer un réseau Google Cloud sécurisé, dans lequel vous découvrirez plusieurs ressources liées à la mise en réseau permettant de créer, de faire évoluer et de sécuriser vos applications sur Google Cloud.
Ce cours présente aux participants des techniques pour surveiller et améliorer les performances de l'infrastructure et des applications dans Google Cloud. À travers un ensemble de présentations, de démonstrations, d'ateliers pratiques et d'études de cas concrets, les participants se familiariseront avec la surveillance full stack, la gestion et l'analyse des journaux en temps réel, le débogage de code en production, le traçage des goulots d'étranglement affectant les performances des applications, et le profilage de l'utilisation du processeur et de la mémoire.
Dans ce cours en auto-formation, les participants étudient des solutions d'atténuation des attaques pouvant survenir en de nombreux points d'une infrastructure basée sur Google Cloud, telles que des attaques par déni de service distribué (DDoS) ou par hameçonnage, ou des menaces liées à la classification et à l'utilisation de contenu. Ils découvriront également Security Command Center, Cloud Logging et les journaux d'audit, ainsi que l'utilisation de Forseti pour connaître l'état de conformité global avec les stratégies de sécurité de l'organisation.
Ce cours en auto-formation présente une étude approfondie des contrôles et techniques de sécurité sur Google Cloud. À travers des présentations, des démonstrations et des ateliers pratiques, les participants découvrent et déploient les composants d'une solution Google Cloud sécurisée, y compris les technologies de contrôle des accès à Cloud Storage, les clés de sécurité, les clés de chiffrement fournies par le client, les contrôles d'accès aux API, les champs d'application, les VM protégées, le chiffrement, et les URL signées. Le cours aborde également la sécurisation des environnements Kubernetes.
Ce cours en auto-formation présente une étude approfondie des contrôles et techniques de sécurité sur Google Cloud. À travers des présentations enregistrées, des démonstrations et des ateliers pratiques, les participants explorent et déploient les composants d'une solution Google Cloud sécurisée (Cloud Identity, Resource Manager, Cloud IAM, les pare-feu de cloud privé virtuel, Cloud Load Balancing, l'appairage cloud, Cloud Interconnect et VPC Service Controls, par exemple). Ceci est le premier cours de la série "Security in Google Cloud". Après l'avoir terminé, inscrivez-vous au cours "Security Best Practices in Google Cloud".
Bienvenue dans le deuxième cours de la série "Networking in Google Cloud", intitulé "Routing and Addressing". Dans ce cours, nous allons nous intéresser aux concepts centraux du routage et de l'adressage dans le contexte des fonctionnalités réseau de Google Cloud. Dans le module 1, nous poserons les bases en explorant le routage et l'adressage réseau dans Google Cloud. Nous verrons des composants clés tels que le routage IPv4, l'utilisation de vos propres adresses IP (BYOIP, Bring Your Own IP) et la configuration de Cloud DNS. Dans le module 2, nous nous concentrerons sur les options de connexion privée. Nous explorerons des cas d'utilisation et des méthodes permettant d'accéder à Google et à d'autres services de façon privée à l'aide d'adresses IP internes. À la fin de ce cours, vous aurez compris comment acheminer et gérer efficacement votre trafic réseau dans Google Cloud.
"Networking in Google Cloud" est une série de cours en six parties. Bienvenue dans la première des six parties de notre série de cours "Networking in Google Cloud: Fundamentals". Ce cours fournit une présentation complète des concepts fondamentaux de la mise en réseau, y compris les principes de base de la mise en réseau, les cloud privés virtuels (VPC) et le partage des réseaux VPC. Il traite également des techniques de journalisation et de surveillance des réseaux.
"Concepts fondamentaux de Google Cloud : infrastructure de base" présente les concepts et les termes à connaître pour utiliser Google Cloud. À travers des vidéos et des ateliers pratiques, il décrit et compare la plupart des services Google Cloud de calcul et de stockage, ainsi que des outils importants de gestion des ressources et des règles.