Join Sign in

Thais Araujo

Member since 2024

Gold League

31485 points
Build and Deploy a Generative AI solution using a RAG framework Earned Kas 18, 2024 EST
Develop Advanced Enterprise Search and Conversation Applications Earned Kas 8, 2024 EST
Text Prompt Engineering Techniques Earned Kas 6, 2024 EST
Integrate Vertex AI Search and Conversation into Voice and Chat Apps Earned Kas 1, 2024 EDT
Sorumlu Yapay Zeka: Google Cloud ile Yapay Zeka İlkelerinin Uygulanması Earned Eki 22, 2024 EDT
Vertex AI'da İstem Tasarımı Earned Eki 10, 2024 EDT
Sorumlu Yapay Zeka'ya Giriş Earned Eyl 19, 2024 EDT
Büyük Dil Modellerine Giriş Earned Eyl 17, 2024 EDT
Üretken Yapay Zekaya Giriş Earned Eyl 17, 2024 EDT
Engineer Data for Predictive Modeling with BigQuery ML Earned Haz 26, 2024 EDT
Build a Data Warehouse with BigQuery Earned Haz 25, 2024 EDT
Serverless Data Processing with Dataflow: Foundations Earned Haz 7, 2024 EDT
Smart Analytics, Machine Learning, and AI on Google Cloud Earned Haz 4, 2024 EDT
Building Resilient Streaming Systems on Google Cloud Platform Earned May 28, 2024 EDT
Modernizing Data Lakes and Data Warehouses with Google Cloud Earned May 13, 2024 EDT
Google Cloud Big Data and Machine Learning Fundamentals Earned May 3, 2024 EDT

Demonstrate your ability to implement updated prompt engineering techniques and utilize several of Gemini's key capacilities including multimodal understanding and function calling. Then integrate generative AI into a RAG application deployed to Cloud Run. This course contains labs that are to be used as a test environment. They are deployed to test your understanding as a learner with a limited scope. These technologies can be used with fewer limitations in a real world environment.

Learn more

In this course, you'll use text embeddings for tasks like classification, outlier detection, text clustering and semantic search. You'll combine semantic search with the text generation capabilities of an LLM to build Retrieval Augmented Generation (RAG) solutions, such as for question-answering systems, using Google Cloud's Vertex AI and Google Cloud databases.

Learn more

Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.

Learn more

This course on Integrate Vertex AI Search and Conversation into Voice and Chat Apps is composed of a set of labs to give you a hands on experience to interacting with new Generative AI technologies. You will learn how to create end-to-end search and conversational experiences by following examples. These technologies complement predefined intent-based chat experiences created in Dialogflow with LLM-based, generative answers that can be based on your own data. Also, they allow you to porvide enterprise-grade search experiences for internal and external websites to search documents, structure data and public websites.

Learn more

Kurumsal yapay zeka ve makine öğreniminin kullanımı artmaya devam ettikçe, bunu sorumlu bir şekilde oluşturmanın önemi de artıyor. Sorumlu yapay zeka hakkında konuşmanın, onu uygulamaya koymaktan çok daha kolay olabilmesi burada bir zorluk oluşturmaktadır. Kuruluşunuzda sorumlu yapay zekayı nasıl işlevsel hale getireceğinizi öğrenmekle ilgileniyorsanız, bu kurs tam size göre. Bu kurs, Google Cloud'un sorumlu yapay zeka yaklaşımını nasıl uyguladığını derinlemesine inceleyerek, kendi sorumlu yapay zeka stratejinizi oluşturmanız için size kapsamlı bir çerçeve sunuyor.

Learn more

Vertex AI'da istem mühendisliği, görüntü analizi ve çok modlu üretken teknikler gibi becerileri göstermek için Vertex AI'da İstem Tasarımı beceri rozetini tamamlayın. Etkili istemlerin nasıl oluşturulacağını, üretken yapay zeka çıktılarına nasıl rehberlik edileceğini ve Gemini modellerinin gerçek dünyadaki pazarlama senaryolarına nasıl uygulanacağını keşfedin. Ein Beceri rozeti, Google Cloud ürün ve hizmetlerine ilişkin uzmanlığınızın tanınması amacıyla Google Cloud tarafından verilen özel bir dijital rozettir ve bilginizi etkileşimli, uygulamalı bir ortamda uygulama yeteneğinizi test eder. Ağınızla paylaşabileceğiniz bir beceri rozeti almak için bu beceri rozeti kursunu ve son değerlendirme yarışması laboratuvarını tamamlayın. Bu aktiviteyi tamamlayın ve bir rozet kazanın! Geliştirdiğiniz becerileri herkese göstererek bulut üstüne kariyerinizi geliştirin.

Learn more

Bu kurs, sorumlu yapay zekanın ne olduğunu, neden önemli olduğunu ve Google'ın sorumlu yapay zekayı ürünlerinde nasıl uyguladığını açıklamayı amaçlayan giriş seviyesinde bir mikro öğrenme kursudur. Ayrıca Google'ın 7 yapay zeka ilkesini de tanıtır.

Learn more

Bu giriş seviyesi mikro öğrenme kursunda büyük dil modelleri (BDM) nedir, hangi kullanım durumlarında kullanılabileceği ve büyük dil modelleri performansını artırmak için nasıl istem ayarlaması yapabileceğiniz keşfedilecektir. Ayrıca kendi üretken yapay zeka uygulamalarınızı geliştirmenize yardımcı olacak Google araçları hakkında bilgi verilecektir.

Learn more

Bu, üretken yapay zekanın ne olduğunu, nasıl kullanıldığını ve geleneksel makine öğrenme yöntemlerinden nasıl farklı olduğunu açıklamayı amaçlayan giriş seviyesi bir mikro öğrenme kursudur. Ayrıca kendi üretken yapay zeka uygulamalarınızı geliştirmenize yardımcı olacak Google Araçlarını da kapsar.

Learn more

Complete the intermediate Engineer Data for Predictive Modeling with BigQuery ML skill badge to demonstrate skills in the following: building data transformation pipelines to BigQuery using Dataprep by Trifacta; using Cloud Storage, Dataflow, and BigQuery to build extract, transform, and load (ETL) workflows; and building machine learning models using BigQuery ML.

Learn more

Complete the intermediate Build a Data Warehouse with BigQuery skill badge to demonstrate skills in the following: joining data to create new tables, troubleshooting joins, appending data with unions, creating date-partitioned tables, and working with JSON, arrays, and structs in BigQuery. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge course, and final assessment challenge lab, to receive a digital badge that you can share with your network.

Learn more

This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.

Learn more

Incorporating machine learning into data pipelines increases the ability to extract insights from data. This course covers ways machine learning can be included in data pipelines on Google Cloud. For little to no customization, this course covers AutoML. For more tailored machine learning capabilities, this course introduces Notebooks and BigQuery machine learning (BigQuery ML). Also, this course covers how to productionalize machine learning solutions by using Vertex AI.

Learn more

This 1-week, accelerated on-demand course builds upon Google Cloud Platform Big Data and Machine Learning Fundamentals. Through a combination of video lectures, demonstrations, and hands-on labs, you'll learn to build streaming data pipelines using Google cloud Pub/Sub and Dataflow to enable real-time decision making. You will also learn how to build dashboards to render tailored output for various stakeholder audiences.

Learn more

The two key components of any data pipeline are data lakes and warehouses. This course highlights use-cases for each type of storage and dives into the available data lake and warehouse solutions on Google Cloud in technical detail. Also, this course describes the role of a data engineer, the benefits of a successful data pipeline to business operations, and examines why data engineering should be done in a cloud environment. This is the first course of the Data Engineering on Google Cloud series. After completing this course, enroll in the Building Batch Data Pipelines on Google Cloud course.

Learn more

This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.

Learn more