Dołącz Zaloguj się

Wojciech Sienkiewicz

Jest członkiem od 2020

Liga złota

26511 pkt.
Machine Learning Operations (MLOps): Getting Started Earned wrz 19, 2025 EDT
Machine Learning Operations (MLOps) with Vertex AI: Manage Features Earned sie 13, 2025 EDT
Introduction to AI and Machine Learning on Google Cloud Earned sie 7, 2025 EDT
Professional Machine Learning Engineer Study Guide Earned lip 1, 2025 EDT
Recommendation Systems on Google Cloud Earned lip 15, 2024 EDT
Build, Train and Deploy ML Models with Keras on Google Cloud Earned lip 7, 2024 EDT
Launching into Machine Learning Earned cze 22, 2024 EDT
Build and Deploy Machine Learning Solutions on Vertex AI Earned cze 22, 2024 EDT
Computer Vision Fundamentals with Google Cloud Earned cze 12, 2024 EDT
Przygotowywanie danych do użycia z interfejsami ML w Google Cloud Earned cze 4, 2024 EDT
Google Cloud Big Data and Machine Learning Fundamentals Earned cze 4, 2024 EDT
Generative AI Fundamentals - Polski Earned paź 24, 2023 EDT
Introduction to Responsible AI - Polski Earned paź 24, 2023 EDT
Introduction to Large Language Models - Polski Earned paź 24, 2023 EDT
Introduction to Generative AI - Polski Earned paź 24, 2023 EDT
Build a Data Warehouse with BigQuery Earned sie 1, 2023 EDT
Serverless Data Processing with Dataflow: Foundations Earned cze 14, 2023 EDT
Przygotowywanie danych do użycia z interfejsami ML w Google Cloud Earned cze 13, 2023 EDT
Smart Analytics, Machine Learning, and AI on Google Cloud Earned cze 12, 2023 EDT
Building Resilient Streaming Analytics Systems on Google Cloud Earned cze 12, 2023 EDT
Engineer Data for Predictive Modeling with BigQuery ML Earned cze 11, 2023 EDT
Building Batch Data Pipelines on Google Cloud Earned cze 6, 2023 EDT
Modernizing Data Lakes and Data Warehouses with Google Cloud Earned maj 30, 2023 EDT
Google Workspace Essentials Earned lut 11, 2022 EST
Konfigurowanie środowiska programistycznego w Google Cloud Earned sty 21, 2022 EST
Deploy Kubernetes Applications on Google Cloud Earned gru 15, 2021 EST
Wdrażanie równoważenia obciążenia w Compute Engine Earned gru 12, 2021 EST
Cloud Hero Kubernetes Skills Earned gru 3, 2021 EST
Cloud Hero Infra Skills Earned gru 3, 2021 EST
Intro to BigQuery: Analytics & Machine Learning Earned gru 2, 2021 EST
Elastic Google Cloud Infrastructure: Scaling and Automation - Locales Earned mar 31, 2021 EDT
Essential Google Cloud Infrastructure: Foundation Earned mar 12, 2021 EST

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

Więcej informacji

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners will get hands-on practice using Vertex AI Feature Store's streaming ingestion at the SDK layer.

Więcej informacji

This course introduces the AI and machine learning (ML) offerings on Google Cloud that build both predictive and generative AI projects. It explores the technologies, products, and tools available throughout the data-to-AI life cycle, encompassing AI foundations, development, and solutions. It aims to help data scientists, AI developers, and ML engineers enhance their skills and knowledge through engaging learning experiences and practical hands-on exercises.

Więcej informacji

This course helps learners create a study plan for the PMLE (Professional Machine Learning Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

Więcej informacji

In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.

Więcej informacji

This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.

Więcej informacji

The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.

Więcej informacji

Earn the intermediate skill badge by completing the Build and Deploy Machine Learning Solutions on Vertex AI skill badge course, where you learn how to use Google Cloud's Vertex AI platform, AutoML, and custom training services to train, evaluate, tune, explain, and deploy machine learning models.

Więcej informacji

This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.

Więcej informacji

Ukończ szkolenie wprowadzające Przygotowywanie danych do użycia z interfejsami ML w Google Cloud, aby zdobyć odznakę potwierdzającą zdobycie następujących umiejętności: czyszczenie danych przy użyciu usługi Dataprep firmy Trifacta, uruchamianie potoków danych w Dataflow, tworzenie klastrów i uruchamianie zadań Apache Spark w Dataproc, a także wywoływanie interfejsów API dotyczących uczenia maszynowego, w tym Cloud Natural Language API, Google Cloud Speech-to-Text API oraz Video Intelligence API. Odznaka umiejętności to wyjątkowa cyfrowa odznaka wydawana przez Google Cloud, która potwierdza Twoją wiedzę o produktach i usługach Google Cloud. Aby ją zdobyć, musisz pokazać, że potrafisz zastosować zdobytą wiedzę w praktycznym, interaktywnym środowisku. Ukończ to szkolenie oraz moduł Challenge Lab, aby zdobyć odznakę umiejętności, którą możesz udostępnić w swojej sieci kontaktów.

Więcej informacji

This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.

Więcej informacji

Aby zdobyć odznakę umiejętności, ukończ szkolenia Introduction to Generative AI, Introduction to Large Language Models i Introduction to Responsible AI. Zdaj test i pokaż, że rozumiesz podstawowe koncepcje związane z generatywną AI. Odznaka umiejętności to cyfrowa odznaka wydawana przez Google Cloud, która potwierdza Twoją wiedzę o produktach i usługach Google Cloud. Ustaw swój profil jako publiczny i dodaj odznakę umiejętności do profilu w mediach społecznościowych, aby pochwalić się swoim osiągnięciem.

Więcej informacji

Celem tego szybkiego szkolenia dla początkujących jest wyjaśnienie, czym jest odpowiedzialna AI i dlaczego jest ważna, oraz przedstawienie, jak Google wprowadza ją w swoich usługach. Szkolenie zawiera także wprowadzenie do siedmiu zasad Google dotyczących sztucznej inteligencji.

Więcej informacji

To szybkie szkolenie dla początkujących wyjaśnia, czym są duże modele językowe (LLM) oraz jakie są ich zastosowania. Przedstawia również możliwości zwiększenia ich wydajności przez dostrajanie przy użyciu promptów oraz narzędzia Google, które pomogą Ci tworzyć własne aplikacje korzystające z generatywnej AI.

Więcej informacji

Celem tego szybkiego szkolenia dla początkujących jest wyjaśnienie, czym jest generatywna AI oraz jakie są jej zastosowania. Szkolenie przedstawia również różnice pomiędzy tą technologią a tradycyjnymi systemami uczącymi się, a także narzędzia Google, które pomogą Ci tworzyć własne aplikacje korzystające z generatywnej AI.

Więcej informacji

Complete the intermediate Build a Data Warehouse with BigQuery skill badge to demonstrate skills in the following: joining data to create new tables, troubleshooting joins, appending data with unions, creating date-partitioned tables, and working with JSON, arrays, and structs in BigQuery. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge course, and final assessment challenge lab, to receive a digital badge that you can share with your network.

Więcej informacji

This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.

Więcej informacji

Ukończ szkolenie wprowadzające Przygotowywanie danych do użycia z interfejsami ML w Google Cloud, aby zdobyć odznakę potwierdzającą zdobycie następujących umiejętności: czyszczenie danych przy użyciu usługi Dataprep firmy Trifacta, uruchamianie potoków danych w Dataflow, tworzenie klastrów i uruchamianie zadań Apache Spark w Dataproc, a także wywoływanie interfejsów API dotyczących uczenia maszynowego, w tym Cloud Natural Language API, Google Cloud Speech-to-Text API oraz Video Intelligence API. Odznaka umiejętności to wyjątkowa cyfrowa odznaka wydawana przez Google Cloud, która potwierdza Twoją wiedzę o produktach i usługach Google Cloud. Aby ją zdobyć, musisz pokazać, że potrafisz zastosować zdobytą wiedzę w praktycznym, interaktywnym środowisku. Ukończ to szkolenie oraz moduł Challenge Lab, aby zdobyć odznakę umiejętności, którą możesz udostępnić w swojej sieci kontaktów.

Więcej informacji

Incorporating machine learning into data pipelines increases the ability to extract insights from data. This course covers ways machine learning can be included in data pipelines on Google Cloud. For little to no customization, this course covers AutoML. For more tailored machine learning capabilities, this course introduces Notebooks and BigQuery machine learning (BigQuery ML). Also, this course covers how to productionalize machine learning solutions by using Vertex AI.

Więcej informacji

Processing streaming data is becoming increasingly popular as streaming enables businesses to get real-time metrics on business operations. This course covers how to build streaming data pipelines on Google Cloud. Pub/Sub is described for handling incoming streaming data. The course also covers how to apply aggregations and transformations to streaming data using Dataflow, and how to store processed records to BigQuery or Bigtable for analysis. Learners get hands-on experience building streaming data pipeline components on Google Cloud by using QwikLabs.

Więcej informacji

Complete the intermediate Engineer Data for Predictive Modeling with BigQuery ML skill badge to demonstrate skills in the following: building data transformation pipelines to BigQuery using Dataprep by Trifacta; using Cloud Storage, Dataflow, and BigQuery to build extract, transform, and load (ETL) workflows; and building machine learning models using BigQuery ML. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge course, and final assessment challenge lab, to receive a digital badge that you can share with your network.

Więcej informacji

Data pipelines typically fall under one of the Extract and Load (EL), Extract, Load and Transform (ELT) or Extract, Transform and Load (ETL) paradigms. This course describes which paradigm should be used and when for batch data. Furthermore, this course covers several technologies on Google Cloud for data transformation including BigQuery, executing Spark on Dataproc, pipeline graphs in Cloud Data Fusion and serverless data processing with Dataflow. Learners get hands-on experience building data pipeline components on Google Cloud using Qwiklabs.

Więcej informacji

The two key components of any data pipeline are data lakes and warehouses. This course highlights use-cases for each type of storage and dives into the available data lake and warehouse solutions on Google Cloud in technical detail. Also, this course describes the role of a data engineer, the benefits of a successful data pipeline to business operations, and examines why data engineering should be done in a cloud environment. This is the first course of the Data Engineering on Google Cloud series. After completing this course, enroll in the Building Batch Data Pipelines on Google Cloud course.

Więcej informacji

Workspace is Google's collaborative applications platform, delivered from Google Cloud. In this introductory-level course you will get hands-on practice with Workspace’s core applications from a user perspective. Although there are many more applications and tool components to Workspace than are covered here, you will get experience with the primary apps: Gmail, Calendar, Sheets and a handful of others. Each lab can be completed in 10-15 minutes, but extra time is provided to allow self-directed free exploration of the applications.

Więcej informacji

Aby zdobyć odznakę umiejętności, ukończ szkolenie Konfigurowanie środowiska programistycznego w Google Cloud, w trakcie którego dowiesz się, jak utworzyć i podłączyć infrastrukturę w chmurzę do przechowywania danych przy użyciu podstawowych funkcji technologii Cloud Storage, Identity and Access Management, Cloud Functions oraz Pub/Sub. Odznaka umiejętności to wyjątkowa cyfrowa odznaka wydawana przez Google Cloud, która potwierdza Twoją wiedzę o produktach i usługach Google Cloud. Aby ją zdobyć, musisz pokazać, że potrafisz zastosować zdobytą wiedzę w praktycznym, interaktywnym środowisku. Ukończ to szkolenie oraz moduł Challenge Lab, aby zdobyć odznakę umiejętności, którą możesz udostępnić w swojej sieci kontaktów.

Więcej informacji

Complete the intermediate Deploy Kubernetes Applications on Google Cloud skill badge course to demonstrate skills in the following: Configuring and building Docker container images.Creating and managing Google Kubernetes Engine (GKE) clusters.Utilizing kubectl for efficient cluster management.Deploying Kubernetes applications with robust continuous delivery (CD) practices.

Więcej informacji

Ukończ szkolenie wprowadzające Wdrażanie równoważenia obciążenia w Compute Engine, aby zdobyć odznakę potwierdzającą zdobycie następujących umiejętności: pisanie poleceń gcloud przy użyciu Cloud Shell, tworzenie i wdrażanie maszyn wirtualnych w Compute Engine oraz konfigurowanie systemów równoważenia obciążenia sieci i HTTP. Odznaka umiejętności to wyjątkowa cyfrowa odznaka wydawana przez Google Cloud, która potwierdza Twoją wiedzę o produktach i usługach Google Cloud. Aby ją zdobyć, musisz pokazać, że potrafisz zastosować zdobytą wiedzę, w praktycznym, interaktywnym środowisku. Ukończ to szkolenie oraz moduł Challenge Lab, aby zdobyć odznakę umiejętności, którą możesz udostępnić w swojej sieci kontaktów.

Więcej informacji

Get hands-on practice with Google Cloud! You will compete with your peers to see who can finish this game with the most points. Speed and accuracy will be used to calculate your scores — earn points by completing the labs accurately and bonus points for speed! Be sure to click “End” where you’re done with each lab to be rewarded your points.

Więcej informacji

Get hands-on practice with Google Cloud! You will compete with your peers to see who can finish this game with the most points. Speed and accuracy will be used to calculate your scores — earn points by completing the labs accurately and bonus points for speed! Be sure to click “End” where you’re done with each lab to be rewarded your points.

Więcej informacji

Welcome Gamers! Today's game is all about experimenting with Big Query for Machine Learning! Use real life case studies to learn various concepts of BQML and have fun. Take labs to earn points. The faster you complete the lab objectives, the higher your score.

Więcej informacji

This course version is for non-English only. If you wish to take this course in English, please enroll here: Elastic Google Cloud Infrastructure: Scaling and Automation. If you wish to take it in another language, change your language in settings to see availability.

Więcej informacji

This accelerated on-demand course introduces participants to the comprehensive and flexible infrastructure and platform services provided by Google Cloud with a focus on Compute Engine. Through a combination of video lectures, demos, and hands-on labs, participants explore and deploy solution elements, including infrastructure components such as networks, virtual machines and applications services. You will learn how to use the Google Cloud through the console and Cloud Shell. You'll also learn about the role of a cloud architect, approaches to infrastructure design, and virtual networking configuration with Virtual Private Cloud (VPC), Projects, Networks, Subnetworks, IP addresses, Routes, and Firewall rules.

Więcej informacji