arrow_back

Setup IAM and Networking for your Dataflow Jobs

로그인 가입
700개 이상의 실습 및 과정 이용하기

Setup IAM and Networking for your Dataflow Jobs

실습 1시간 15분 universal_currency_alt 크레딧 5개 show_chart 입문
info 이 실습에는 학습을 지원하는 AI 도구가 통합되어 있을 수 있습니다.
700개 이상의 실습 및 과정 이용하기

Overview

In this lab, you will learn to set up IAM permissions and use private IP addresses for your Datafow jobs.

Objectives

  • Use IAM permissions that affect whether a job can be launched.
  • Use Private IP addresses for your Dataflow jobs.

Setup and requirements

For each lab, you get a new Google Cloud project and set of resources for a fixed time at no cost.

  1. Sign in to Qwiklabs using an incognito window.

  2. Note the lab's access time (for example, 1:15:00), and make sure you can finish within that time.
    There is no pause feature. You can restart if needed, but you have to start at the beginning.

  3. When ready, click Start lab.

  4. Note your lab credentials (Username and Password). You will use them to sign in to the Google Cloud Console.

  5. Click Open Google Console.

  6. Click Use another account and copy/paste credentials for this lab into the prompts.
    If you use other credentials, you'll receive errors or incur charges.

  7. Accept the terms and skip the recovery resource page.

Activate Cloud Shell

Cloud Shell is a virtual machine that contains development tools. It offers a persistent 5-GB home directory and runs on Google Cloud. Cloud Shell provides command-line access to your Google Cloud resources. gcloud is the command-line tool for Google Cloud. It comes pre-installed on Cloud Shell and supports tab completion.

  1. Click the Activate Cloud Shell button (Activate Cloud Shell icon) at the top right of the console.

  2. Click Continue.
    It takes a few moments to provision and connect to the environment. When you are connected, you are also authenticated, and the project is set to your PROJECT_ID.

Sample commands

  • List the active account name:
gcloud auth list

(Output)

Credentialed accounts: - <myaccount>@<mydomain>.com (active)

(Example output)

Credentialed accounts: - google1623327_student@qwiklabs.net
  • List the project ID:
gcloud config list project

(Output)

[core] project = <project_ID>

(Example output)

[core] project = qwiklabs-gcp-44776a13dea667a6 Note: Full documentation of gcloud is available in the gcloud CLI overview guide.

Task 1. Create a Cloud Storage bucket

  1. In Cloud Shell, to set up your variables, run the following command:

    PROJECT=`gcloud config list --format 'value(core.project)'` USER_EMAIL=`gcloud config list account --format "value(core.account)"` REGION={{{ project_0.default_region | "REGION" }}}
  2. Create a Cloud Storage bucket:

    gcloud storage buckets create gs://$PROJECT --project=$PROJECT

Click Check my progress to verify the objective. Create a Cloud Storage bucket.

Task 2. Launch a Dataflow job

In this task, you try to run a Dataflow job. It will initially fail because of the lack of IAM permissions. After you assign the required role, the job runs successfully.

  1. Firstly, verify the IAM roles associated with the account:

    gcloud projects get-iam-policy $PROJECT \ --format='table(bindings.role)' \ --flatten="bindings[].members" \ --filter="bindings.members:$USER_EMAIL"
  2. Attempt to launch a Dataflow job:

    gcloud dataflow jobs run job1 \ --gcs-location gs://dataflow-templates-{{{ project_0.default_region | "REGION" }}}/latest/Word_Count \ --region $REGION \ --staging-location gs://$PROJECT/tmp \ --parameters inputFile=gs://dataflow-samples/shakespeare/kinglear.txt,output=gs://$PROJECT/results/outputs

This will fail as expected because of missing IAM permissions.

  1. Add the Dataflow Admin role to the user account:
gcloud projects add-iam-policy-binding $PROJECT --member=user:$USER_EMAIL --role=roles/dataflow.admin
  1. Launch the Dataflow job again:

    gcloud dataflow jobs run job1 \ --gcs-location gs://dataflow-templates-{{{ project_0.default_region | "REGION" }}}/latest/Word_Count \ --region $REGION \ --staging-location gs://$PROJECT/tmp \ --parameters inputFile=gs://dataflow-samples/shakespeare/kinglear.txt,output=gs://$PROJECT/results/outputs
  2. On the Google Cloud console title bar, type Dataflow in the Search field, then click Dataflow in the Products & Pages section.

Please wait for about 5 minutes for your job to complete before you proceed.

Click Check my progress to verify the objective. Launch a Dataflow job.

Task 3. Launch in private IPs

In this task, you first try to launch a Dataflow job with the --disable-public-ips directive. It will fail in the first attempt because the network does not have Private Google Access (PGA) turned on. You configure PGA and re-run the command to launch the job.

  1. In Cloud Shell, to launch a Dataflow job using the --disable-public-ips directive, run the following command: gcloud dataflow jobs run job2 \ --gcs-location gs://dataflow-templates-{{{ project_0.default_region | "REGION" }}}/latest/Word_Count \ --region $REGION \ --staging-location gs://$PROJECT/tmp \ --parameters inputFile=gs://dataflow-samples/shakespeare/kinglear.txt,output=gs://$PROJECT/results/outputs --disable-public-ips

This job will fail as expected because PGA is not turned on.

  1. To verify, go to the Google Cloud console, on the Navigation menu, click Dataflow > Jobs, and notice that job2 failed.

  2. Click on job2, then scroll to the bottom to click on "SHOW" next to Logs to see the cause of error.

  3. In Cloud Shell, run the following commands to give the user the required role to enable PGA, and then enable PGA:

gcloud projects add-iam-policy-binding $PROJECT --member=user:$USER_EMAIL --role=roles/compute.networkAdmin gcloud compute networks subnets update default \ --region=$REGION \ --enable-private-ip-google-access
  1. Repeat step 1:

    gcloud dataflow jobs run job2 \ --gcs-location gs://dataflow-templates-{{{ project_0.default_region | "REGION" }}}/latest/Word_Count \ --region $REGION \ --staging-location gs://$PROJECT/tmp \ --parameters inputFile=gs://dataflow-samples/shakespeare/kinglear.txt,output=gs://$PROJECT/results/outputs --disable-public-ips
  2. In the Google Cloud console, on the Navigation menu, click Compute Engine > VM Instances, and notice that the VM launched has no external IP address.

Note: The VM instance will be deleted once the job status will change to succeeded.

Click Check my progress to verify the objective. Launch in Private IPs.

Congratulations!

This concludes the lab. In the lab, you used the correct IAM roles to launch a Dataflow job. Next, you changed the subnet to Private Google Access and launched the VMs that do not use an external IP address as part of your Dataflow job.

End your lab

When you have completed your lab, click End Lab. Qwiklabs removes the resources you’ve used and cleans the account for you.

You will be given an opportunity to rate the lab experience. Select the applicable number of stars, type a comment, and then click Submit.

The number of stars indicates the following:

  • 1 star = Very dissatisfied
  • 2 stars = Dissatisfied
  • 3 stars = Neutral
  • 4 stars = Satisfied
  • 5 stars = Very satisfied

You can close the dialog box if you don't want to provide feedback.

For feedback, suggestions, or corrections, please use the Support tab.

Copyright 2022 Google LLC All rights reserved. Google and the Google logo are trademarks of Google LLC. All other company and product names may be trademarks of the respective companies with which they are associated.

시작하기 전에

  1. 실습에서는 정해진 기간 동안 Google Cloud 프로젝트와 리소스를 만듭니다.
  2. 실습에는 시간 제한이 있으며 일시중지 기능이 없습니다. 실습을 종료하면 처음부터 다시 시작해야 합니다.
  3. 화면 왼쪽 상단에서 실습 시작을 클릭하여 시작합니다.

시크릿 브라우징 사용

  1. 실습에 입력한 사용자 이름비밀번호를 복사합니다.
  2. 비공개 모드에서 콘솔 열기를 클릭합니다.

콘솔에 로그인

    실습 사용자 인증 정보를 사용하여
  1. 로그인합니다. 다른 사용자 인증 정보를 사용하면 오류가 발생하거나 요금이 부과될 수 있습니다.
  2. 약관에 동의하고 리소스 복구 페이지를 건너뜁니다.
  3. 실습을 완료했거나 다시 시작하려고 하는 경우가 아니면 실습 종료를 클릭하지 마세요. 이 버튼을 클릭하면 작업 내용이 지워지고 프로젝트가 삭제됩니다.

현재 이 콘텐츠를 이용할 수 없습니다

이용할 수 있게 되면 이메일로 알려드리겠습니다.

감사합니다

이용할 수 있게 되면 이메일로 알려드리겠습니다.

한 번에 실습 1개만 가능

모든 기존 실습을 종료하고 이 실습을 시작할지 확인하세요.

시크릿 브라우징을 사용하여 실습 실행하기

이 실습을 실행하려면 시크릿 모드 또는 시크릿 브라우저 창을 사용하세요. 개인 계정과 학생 계정 간의 충돌로 개인 계정에 추가 요금이 발생하는 일을 방지해 줍니다.